
Systematic Literature Review Search Query
Refinement Pipeline: Incremental Enrichment

and Adaptation

Maisie Badami1, Boualem Benatallah1, and Marcos Baez2

University of New South Wales (UNSW), Australia
{m.badami,b.benatallah}@unsw.edu.au

LIRIS – University of Claude Bernard Lyon 1, Villeurbanne, France
marcos.baez@liris.cnrs.fr

Abstract. Systematic literature reviews (SLRs) are at the heart of
evidence-based research, collecting and integrating empirical evidence
regarding specific research questions. A leading step in the search for
relevant evidence is composing Boolean search queries, which are still
at the core of how information retrieval systems work to perform an
advanced literature search. Building these queries thus requires going
from the general aims of the research questions into actionable search
terms that are combined into potentially complex Boolean expressions.
Researchers are thus tasked with the daunting and challenging task of
building and refining search queries in their quest for sufficient coverage
and proper representation of the literature. In this paper, we propose
an adaptive Boolean query generation and refinement pipeline for SLR
search. Our approach utilizes a reinforcement learning technique to learn
the optimal modifications for a query based on the feedback collecting
from the researchers about the query retrieval performance. Empirical
evaluations with 10 SLR datasets showed our approach to achieve compa-
rable performance to that of queries manually composed by SLR authors.

Keywords: Systematic Reviews · Query building · Query Enrichment ·
Query Adaptation · Reinforcement Learning

1 Introduction

Systematic literature reviews (SLRs) offer robust and transferable evidence for
evaluating and interpreting relevant research on a topic of interest [13]. SLRs
are used to set the foundation for future research, allowing researchers to for-
mally plan and systematically collect and integrate available evidence in order
to answer research questions [2]. Given their demonstrated value, SLRs are be-
coming a popular type of publication in empirical research domains such as
evidence-based software engineering [13]. The identification of relevant studies is
a fundamental step in the SLR process, as it can impact the overall quality and
workload of the SLRs. This step is guided by the definition of research questions
that set the tone and scope for the entire SLR [13,2]. Researchers are then tasked

2 Badami et al.

with capturing this scope in a search strategy that typically involves composing
Boolean search queries for scientific digital libraries [13].

The ability of the search query to capture relevant works will determine
whether the review has a proper representation of the literature for accurate
synthesis of the literature downstream of the process [31]. It also greatly impact
the workload as researchers need to screen the volume of returned results to
filter out irrelevant work. It is not thus surprising that a large part of the SLR
effort goes to the identification of relevant studies [37]. To make things more
complicated for such a critical task, SLR authors might have limited knowledge
of the review topic and the search terms at the beginning of the process, and the
primary studies themselves may adopt different terminology to refer to similar
concepts [17]. All these circumstances make building proper SLR search queries
challenging task and a potential point of failure.

The challenges in SLR search have motivated research on how to auto-
mate query generation for SLR search. The existing solutions for building the
SLR search query task mainly focused on automatically building search queries
(e.g., [19,20]) or automatically refining existing search queries (e.g., [31,11]).
These proposed methods, while valuable, are limited to specific research domains
(e.g., medical domain). This limitation imposes challenges for generalizing and
adopting these methods in different SLRs and research domains. In addition,
these methods rely on machine learning algorithms (e.g., classifiers) that require
domain-specific training data to predict the performance and rank the generated
queries. Moreover, these methods require authors to compose and provide an ini-
tial query, which poses challenges to researchers who have less knowledge about
building search queries and especially who are new to a research topic [17].

This calls for solutions that can better adapt to different domains and SLRs
while supporting SLR authors in the early the stage of review process where
knowledge is still limited. We addressed these gaps by devising an adaptive query
building and refining pipeline that relies on a reinforcement learning approach for
incrementally refining a generated search query based on authors feedback. More
precisely, given a seed expressing the scope of the literature review (e.g., research
questions or a set of relevant abstracts), the pipeline automatically generates a
search query from the initial seed. Through an interactive process, the pipeline
then leverages author feedback on the query search results to incrementally im-
prove the generated query. The aim is to maximize recall while minimizing the
workload that would impose on later screening steps. The rationale behind our
approach is to leverage SLR authors’ knowledge about the scope of the review
and what is relevant, for automatically building and incrementally learning to
refine the search queries. In sum, the contributions of this paper are as follows:

– We propose a method that exploits a high-level expression of the SLR scope
to build initial search queries and semantically enrich them to deliver an
applicable search query;

– We devise an incremental and adaptive process to refine search queries for
SLRs. The proposed reinforcement learning approach learns to modify and

Title Suppressed Due to Excessive Length 3

adjust the search queries by observing the relevance feedback provided by
researchers on query search results;

– We empirically show, in an evaluation with 10 SLR datasets, that the pro-
posed pipeline can generate effective search queries (in terms of recall and
workload), that have a performance comparable to the queries that domain
experts manually compose.

The rest of this paper proceeds as follows. Related work is given in Section 2.
Section 3 presents our proposed approach. The experiments and evaluations are
presented in Section 4. And finally, Section 5 concludes the paper.

2 Related Work

While most of the literature on SLR automation focuses on study selection (see
[6] for a review), interest in SLR search support has recently sparked. These
efforts can be categorised into two main groups: i) automatic techniques for
generating search queries, and ii) automatic refining of SLR search queries.

In the search query generation task, studies have leveraged information
from the review protocol (e.g., review questions, inclusion and exclusion crite-
ria) or a set of relevant abstracts to extract relevant keywords to build search
queries [20,19]. These studies generally rely on text mining techniques (e.g.,
terms frequency-inverse document frequency (TF-IDF) [27]) to find the most
relevant terms from a given corpus [19,20]. However, these approaches only fo-
cus on suggesting terms to help researchers building queries and do not provide
an end-to-end solution for query adaptation and refinement. Yet, the techniques
serve as an inspiration for building the query generation component.

In the context of systematic reviews, query refinement is depicted as
modifying a query to improve its recall or to reduce the number of studies re-
trieved [31]. Several studies explored techniques to achieve these goals [31,11]. By
leveraging techniques in the form of query expansion (e.g., adding synonyms of
the search terms), query reduction (e.g., removing unnecessary terms), or query
transformation (e.g., rewriting query by replacing the Boolean operators).

Notably, Scells et al. in a series of studies [30,31] proposed a query refinement
technique for medical SLR search queries comprised of query expansion (e.g.,
logical operator replacement (A AND B)→(A OR B)) and semantic transfor-
mations (e.g., using medical embeddings)) and query reduction (e.g., removing
unnecessary terms) and then automatically selecting the best query candidate.

While valuable, current query refinement techniques in SLRs have some limi-
tations. These solutions require authors to compose an initial query which poses
challenges to researchers who have less knowledge about building search queries
and especially who are new to a research topic [17]. They also rely on machine
learning techniques that require domain-specific training data, making them less
reusable across domains. We note that the need for domain-specific data and
training is a significant obstacle for the adoption of automation for SLRs [37].

The use of human-machine approaches has the potential to adapt to
specific domains and incrementally improve outcomes by learning from human

4 Badami et al.

feedback. In SLRs, the active learning approach has shown significant success
in reducing citation screening workload and cost [37,23]. Due to this success,
some tools (e.g., Rayyan) have adopted this approach to support researchers
in citation screening. However, the use of human-machine approaches for SLR
query refinement remains unexplored.

In this paper we aim at filling the above gaps by designing an end-to-end
pipeline that takes a seed expressing the scope of the review, to generate a
Boolean search query and refine it following a human-machine approach. We
take inspiration from previous research in automatic query expansion to gen-
erate a SLR search query from a seed (research questions or abstracts). We
then propose a novel reinforcement learning method for refining SLR search
queries, adopting reinforcement learning models to solve the query refinement
as multi-armed bandit problem [34,38]. We contribute with empirical evidence
characterising the performance of the query building and refinement components
under various meaningful dimensions.

3 Incremental Query Building And Refining Pipeline

In our proposed query generation and refinement approach, the aim is to lever-
age minimum information available to the researchers on the scope of a review
to build initial search queries. Then, through a refinement process, based on
researcher feedback, incrementally refine and improve those initially generated
queries. In the context of this work, the query quality associates with the per-
formance of a query to i) retrieve relevant literature as defined by the scope of
the review (recall), and ii) minimise the (unnecessary) screening effort that the
number of studies in retrieved results imposes on the eligibility screening efforts.
It is worth noting that this balance is important as very “open” search queries
may be effective in retrieving the majority of relevant works but return a mas-
sive number of search results. Conversely, narrow search queries may be easily
manageable but miss important relevant works.

To realise this goal, we devised the query building and refinement pipeline
illustrated in Figure. 1. In summary, the pipeline receives a seed representing
the scope of the SLR (e.g. research questions). Then, it uses the seed to extract
candidate terms to build an initial query. The pipeline expands the initial query
by enriching the terms in the initial query. The generated query is then auto-
matically executed on a digital library (DL) search engine to retrieve the search
results. The pipeline uses relevance feedback from researchers on the search re-
sults to measure the performance of the executed query. Finally, the pipeline uses
these observations to refine the query using a reinforcement learning approach.
In what follows, we elaborate on each component of our proposed pipeline.

3.1 Initial Query Builder

The first component of the pipeline is Initial Query Builder which leverages a
high-level expression of the scope of an SLR to build an initial query. The input
to this component is a seed, which can be partially defined research questions

Title Suppressed Due to Excessive Length 5

Sample of
abstracts

Seed (e.g., research questions)

Building Initial Query

Query Enrichment 2

Initial Query

Building Enriched Query

Synonyms set

Semantically relevant terms

knowledge-base thesauri

Word Embedding

DL API

Sampling from search result

Retrieve and Sampling

Retrieved abstracts

3

Enriched Query

Extracting terms from abstracts

Relevance Feedback

Abstracts with feedback

Relevance Feedback
4

Extracted Terms

Boolean Search Query

1 Yes

Ite
ra

tio
n

 Observation (Reward/Demote)

Scored Terms

Query Adaptation

Adapting Query

5

Estimation (Thompson Sampling)

Stop
No

Fig. 1. Architecture of the Query Building and Refinement Pipeline

or multiple relevant abstracts. This component first, removes non-contributing
terms (e.g., stop words and special characters). Next, it extracts all the terms
(nouns, verbs) from the given seed using Stanford’s CoreNLP library [18]. This
component relies on the terms TF-IDF as a criterion to select terms to construct
an initial query when the seed contains more than one document. When the
input seed contains only one document (e.g., one relevant abstract), the terms
frequency (TF) is used to select top-n relevant terms. The selected terms at
this stage represent concepts that should be present in relevant literature (i.e.,
matching results). We refer to these terms as main terms of the query. Therefore,
Initial Query Builder constructs the initial query by joining the main terms using
‘AND’ operator. For instance, for given research question RQ:“Which techniques
perform best when used to predict software fault?” as the seed, Initial Query
Builder extracts the main terms and generates an initial query denoting: q =
(software AND fault AND predict).

The generated initial query search results will be narrow and not suitable for
recall-oriented SLR search. The reason is that authors of scientific literature use
different terminologies to express same concept [8]. To address this, we devise
the pipeline with a query enrichment component which we explain next.

3.2 Query Enrichment

We devised the pipeline with two query enrichment techniques: i) a knowledge-
base approach for finding the synonyms of main query terms [5], and ii) an

6 Badami et al.

embedding approach to find alternative terms that are relevant to the query
terms but may not be synonyms to the main terms [5].

Knowledge-base Enrichment. This component finds all the synonyms of a
given query term using WordNet [22]. It builds a synonym set for each query
term, containing the term and its synonyms. WordNet collects English words into
groups of synonyms, called synsets [22]. One word in WordNet may have more
than one synset. WordNet records the semantic relations between the synsets
that describes the specific concept (hyponym) or generalized concept (hypernym)
of a synset [22]. To enrich a given search term, this component selects a synset
from WordNet that has a hyponym similar to other terms in the query. For
instance, in the initial query q (from our ongoing example), the term “fault”
has a synset that denotes the concept of “geography” and a synset that denotes
“programming”. The synset that denotes “programming” is selected because it
has a similar hyponym to the term “software” in the query. As a result, for each
term in query q, the following synset is selected for fault:{fault, defect, error,...}.

The described enrichment approach has the potential to improve the query’s
retrieval performance [5]. However, the knowledge-based thesauri often do not
hold all the semantically relevant terms that are not synonyms [21]. Therefore,
we introduced another enrichment technique to further improve the query perfor-
mance in retrieving papers that use alternative terms to express similar concept.

Embedding Enrichment. This enrichment component builds upon a word
embedding approach [21]. In word embeddings, similar words have similar vec-
tors in a vector space [21]. This component uses a word embeddings model to
find the most relevant terms to each synonym set and collects these terms into
an enriched set. First, it calculates the mean vector of each synonym set using
the vectors of all the terms within the synonym set (⃗sets = 1/|sets|

∑
s∈sets

s⃗).
Herein, sets denotes a synonym set. Next, the component uses the cosine simi-
larity score of embedding terms and the mean vector of each synonym set (⃗sets)
to find top-n candidate terms in the embedding that have similarity to the syn-
onym set. These top-n selected candidate terms form a candidate set (W) for
each synonym set. Finally, to select the most similar terms from the candidate
set, Embedding Enrichment ranks the terms in the candidate set (W) based on
their cosine similarity to the mean vector of the initial query. We chose to rank
the terms in the candidate sets (W) based on their similarities to the query
instead of their synonym sets (sets). This way, we ensured the terms that are
more relevant to the query are ranked higher and selected for enrichment [15].
A query’s mean vector is calculated by averaging the vectors of all the terms in
the query (q⃗ = 1/|q|

∑
t∈q q⃗). Herein, q denotes a query. Therefore, the score of

term w from the candidate sets (W) is calculated as: score(w, q) = cos(q⃗, w⃗).
Herein, w⃗ denotes vector of a term w in a candidate set (W). In our experiment,
a minimum similarity threshold (α) is used to select top-n terms. These top-n
terms form an enriched set for each corresponding synonym set.

Query Composer. Once all the enriched sets are generated, Query Composer
component builds an enriched query by applying Boolean logic. It is assumed
that the terms in the enriched sets are alternative to the main terms in the

Title Suppressed Due to Excessive Length 7

initial query. Therefore, Query Composer assembles the alternative terms in the
enriched set using OR operator and forms a query cluster for each enriched
set. For instance, the main term predict and its enriched set {predict, estimate,
model} results in a cluster as: (predict OR detect OR model). The final query is
then formed by concatenating all the query clusters, using an ’AND’ operator.
Therefore, for initial query q, enriched query q∗ will be generated: q∗ = (software
OR program...) AND (fault OR defect OR...) AND (predict OR detect...). At
this stage the queries are built using only OR and AND operation. Using other
operations are left to the future work.

3.3 Query Adaptation

Query adaptation is a common practice in SLR search. Researchers modify
search queries based on the knowledge gained by screening more candidate pa-
pers over time. In practice, this process can take many iterations and is prone
to error. Furthermore, due to the large and expanding number of publications,
researchers can spend significant time evaluating and appraising search results
and accordingly adapting the queries [32]. To help researchers with this time-
consuming task, we formulated the query adaptation problem in the form of a
reinforcement learning model which learns to adapt queries by observing changes
in the retrieved papers. We built our approach on a multi-armed bandit prob-
lems [14]. In multi-armed bandit problems, the algorithm continually allows a
choice of which action to take and each action results in a reward based on an
underlying probability distribution [33]. The algorithm learns to take the actions
that maximise the accumulative rewards, by repeating the action and observing
the results [33]. In what follows, we elaborate on the components of our proposed
query adaptation approach.

Observation. The first step in the query adaptation is observation. It consists of
three components: i) search and retrieve; ii) sampling; and iii) relevance feedback.

Search and Retrieve. This component facilitates the search on various digital
libraries. It contains adapters for executing search queries by calling digital li-
braries API. It executes the queries and retrieves the results for processing.

Sampling. In practice, researchers examine the query performance by screening
a subset of retrieved papers [16]. Building on this practice, we aim at improving
the retrieval performance of the search query by learning about the relevance of
a sample set from the query search results. For this, we introduced a sampling
mechanism to the pipeline. The sampling component has the task of selecting S
items from the search result based on a learning strategy introduced next. This
component first extracts all the terms (nouns, verbs) from the retrieved abstracts
using Stanford’s CoreNLP library [18]. Next, it extracts the corresponding word
vectors for these terms using an embedding model (e.g., Glove [24]). It then
averages all these terms vectors to find the mean vector of each abstract. The
sampling component also calculates the mean vector of the query by averaging
corresponding vectors of all its terms. It makes use of the cosine similarity metric
to calculate the similarity between the vector of each abstract and the vector of

8 Badami et al.

the query: Score(a, q∗) = Sima = cos(q⃗∗, a⃗). Here, a⃗ represents the vector of the
abstract and q⃗∗ is the vector of the executed query. Then, it ranks the abstracts
in descending order based on their similarity score. Finally, it selects a set of
samples based on a sampling strategy. The sampling strategy is applied either
by seeking feedback on uncertain or certain abstracts. To this end, a lower η and
a higher ζ similarity score thresholds define the sampling strategy. In sampling
based on uncertainty, abstracts are those that the pipeline is less confident about
their relevance (η < Sima < ζ). Instead, sampling based on certainty seeks
confirmation on abstracts with the highest similarity scores (Sima > ζ). The
choice for the sampling method is a configuration parameter of the pipeline.

Relevance Feedback. This component presents the selected samples to researchers
for receiving feedback. Leveraging a binary relevance feedback method [29], re-
searchers can screen the sample abstracts and label them as relevant or irrele-
vant, based on whether they fit the scope of the review or not. They can also
screen additional abstracts from the search results. The abstracts with feedback
are then used in the next component of the pipeline to modify the search query.

Estimation. The next step in query adaptation process is estimation which
includes two components: i) reward/demote schema and ii) terms performance
estimator that computes the retrieval performance of the query terms.

Reward/Demote Scheme. This component keeps records of the accumulated re-
wards and demotes for each query term. It also finds candidate terms in the rele-
vant abstracts that are not yet part of the query but have shown positive perfor-
mance (i.e., candidate terms). Reward/Demote Scheme complies with two main
functions: i) Rewards/Demotes Calculator, and ii) Candidate Terms Finder.

Each time new relevant/irrelevant abstracts are received, the Rewards/ De-
motes calculator extracts all terms (nouns, verbs) from each abstract, using
Stanford’s CoreNLP [18]. It then updates the rewards and demotes of the query
terms, based on their presence in relevant or irrelevant abstracts. Each query
term has default value of 1 for reward and demote in the first iteration. Each
time a query term appears in a new irrelevant abstract, it will be demoted
(dt = +1). In turn, every time a query term appears in a new relevant abstract,
it will be rewarded (rt = +1). This component updates the term rewards and
demotes in each iteration. Therefore, after n iterations the accumulated rewards
and demotes for query term t would be: rt =

∑n−1
i=1 rti and dt =

∑n−1
i=1 dti.

In addition to keeping the record of query terms’ rewards and demotes, Re-
ward/Demote Scheme has another function that finds new candidate search
terms. These are the terms that frequently appear in relevant abstracts but
are not part of the query, yet. When all the terms are extracted from relevant
abstracts, Candidate Terms Finder uses the TF-IDF of those terms as a filter-
ing mechanism and selects candidate terms when their TF-IDF score is above
a minimum threshold. Terms that meet these criteria are added to a candidate
terms set. The candidate terms are used by the Query modifier component when
a term in a query must be replaced with a more suited term. The terms’ accu-
mulated rewards and demote are used by the Terms Performance Estimator to
estimate the retrieval performance of each term.

Title Suppressed Due to Excessive Length 9

Terms Performance Estimator. Having the terms with rewards and demotes,
the only remaining question is: “how to choose a term for adding to or removing
from a query?”. Instead of choosing an uncertain heuristic, we used Thompson
Sampling [28], in which this question is answered by capturing this uncertainty
in a probability distribution [28]. In our query adaptation problem, Thompson
Sampling holds a policy for deciding which term should be modified in a query. It
also provides an algorithm for finding new candidate terms that could update this
policy [38]. We utilized Thompson Sampling for our multi-armed bandit problem
because it has provided near-optimal regret1 found in previous research [34].

For candidate term t, Thompson sampling estimates a probability distribu-
tion θ=Beta(rt, dt), using the accumulated rewards (rt) and demotes (dt). This
distribution shows the expected reward when a particular term is chosen and
also how variable reward is, which affect the action that is taken (removing or
replacing a term) [38]. This distribution probability value is updated based on
the algorithm observation (i.e., whether the term appears on relevant or irrel-
evant abstracts). Each time terms with rewards and demotes are received, the
algorithm updates their θ value based on their rewards and demotes. More specif-
ically, when the algorithm obtains a set of candidate terms C = {t1, t2, ..., tn}
along with their accumulated rewards and demotes, it updates the terms prob-
ability distributions, θ = {θ1, θ2, ..., θn}, where 0 < θ < 1 using Bayes rule as:

P (θ|t) = P (t|θ)P (θ)
P (t) . If β(rt, dt) is the β value for term t in iteration i, then af-

ter observing a win r = 1, its β value would be β(rt + 1, dt). Conversely, after
observing a loss d = 1 its β value will be: β(rt, dt + 1).

The candidate term is then selected according to its probability (θt) satisfies:
argmaxtP (θ|t) = E[reward|θt]p(θt|A) where A is the set of observed abstracts
(relevant and irrelevant) and θt is the parameters of the Beta distribution for
term t. It is worth noting that our query adaptation problem is a Bernoulli
problem, meaning that the generated random variable by each term has only
two possible outcomes: 0 or 1 and the value of Beta(α, β) is within the interval
[0, 1]. Therefore, instead of the result varying per term, the probability of term
generating rewards varies [4].

Query Modifier. The last component of query adaption is Query Modifier
that modifies the query by adding or removing terms from the query based on
their observed performance. To adapt a query, it first identifies query clauses2

which their performance values are below a minimum threshold γ. The threshold
outlines the minimum accumulative rewards and demotes that a query clause
should have to be considered efficient for query retrieval performance. After
identifying inefficient query clauses, this component finds the term in the clause
that makes the clause inefficient. It compares the performance of the term with
its sibling terms’ performance3. Query Modifier would replace a term in the
query clause if the number of relevant abstracts that the term appears on is

1 The per-iteration regret is the mean of rewards of a choice with the best rewards
and the action taken by the algorithm [28].

2 We define a query clause as a conjunction of a set of terms such as (t1 AND t3)
3 In a query cluster such as (t1 OR t2) , t1 is considered as sibling term to t2

10 Badami et al.

below the average number of relevant abstracts its sibling terms appear on. This
indicates that the term is not sufficient in retrieving relevant abstracts. Moreover,
Query Modifier replaces this term with a candidate term which is estimated to
yield the highest probability distribution (θ) by the Bayesian algorithm.

For instance, as illustrated in Figure 2, suppose that after i iterations Query
Modifier identifies t3 is to underperform. It would remove t3 and replaces it with
t6, the candidate term that has the highest probability value θ in iteration i.
When to stop the adaptation is a problem that could be addressed with different
strategies. Currently we assume that the authors decide when to stop.

Fig. 2. Query modifier removes and adds terms in iteration i

4 Evaluation

The main goal of the evaluation was to assess the two main design decisions in
our proposed pipeline: the (i) automatic generation of the search query from the
initial user input, and (ii) incremental refinement of the initial search query by
leveraging user feedback. To this end, we designed two experiments that evalu-
ated the initial and refined queries according to relevant performance metrics.4

4.1 Methods

Datasets. We performed the evaluation on SLR datasets that were made pub-
licly available by their authors. To identify these datasets, we looked for SLRs in
computer science that had published their search and screening data, by system-
atically searching datasets at Zenodo and Figshare.5 As a result, we identified
10 SLRs that included research questions, the SLR search query, the search re-
sult dataset, and final relevance assessment. Of these SLRs, 5 also included the
relevance assessment from the title and abstract screening phase. We consider
the SLR authors’ relevance assessment to be the gold label in our experiments.

Experiment 1- Initial query generation. In this experiment, we assessed our
approach in generating the search query directly from an initial seed, by applying
the query generation and enrichment components. To understand the impact of

4 For full details about the datasets, experimental details and in-depth results please
refer to our supplementary material at https://tinyurl.com/496zuar3 and imple-
mentation details on https://tinyurl.com/2rp4m5cs

5 Popular dataset repositories, at https://zenodo.org and http://figshare.com

https://tinyurl.com/496zuar3
https://tinyurl.com/2rp4m5cs
https://zenodo.org
http://figshare.com

Title Suppressed Due to Excessive Length 11

the amount of information in the seed on these components, we tested three con-
ditions having:i) only research questions (GEN-RQ), ii) abstracts from (1 or 3)
relevant papers (GEN-ABS(1,3)); iii) and a combination including the research
questions and one abstract (GEN-RQA). Notice that we only used the abstracts
of the relevant papers for building the seeds, as they capture a meaningful sum-
mary of the paper. We generated search queries for the 10 SLR datasets, taking
the seed from each SLR. For comparison, we took as baseline (BASE-OG) the
performance of the original search queries from each SLR adapted and scoped
to our target digital library and the fields currently supported (title, abstract).

Experiment 2- Query adaptation and refinement. Here, we evaluated the
performance of the query adaptation based on author relevance feedback when
incrementally refining the initial search query. To do so, we took the initial
queries generated with research questions (GEN-RQ) in Experiment 1. Then we
simulated the author feedback by leveraging the relevance assessment already
present in the SLR datasets, i.e., screening relevance feedback made strictly
based on title and abstract. We assessed the changes in query performance within
5 iterations, where for the sampling method we tested two different approaches:
i) uncertainty sampling, where abstracts for feedback are drafted from those
where the pipeline is less confident about their relevance (low similarity score);
ii) certainty sampling, where abstracts are drafted from those the pipeline is
most certain about their relevance (high similarity score). The idea of these
two methods was to test the impact of the class distribution (ratio relevant to
irrelevant papers) in authors’ feedback since these contribute differently to the
query adaptation. The uncertainty sampling returns predominately irrelevant
papers, while the certainty sampling returns predominantly relevant papers.

For both sampling methods, we used 0.80 as the highest and 0.30 as the
lower similarity thresholds for estimating relevance. The sampling size in the
experiment was five papers for each SLR and in each iteration. We compared
the performance of the query adaptation conditions against the initial generated
search query (GEN-RQ) and the original search query (BASE-OG).

Data processing and analysis. In our analysis, we relied on metrics to help
us capture how effective search queries are in identifying relevant papers while
lowering the workload of the screening process. To capture the effectiveness we
relied on standard precision and recall metrics applied to this context. Precision
measures the proportion of retrieved relevant papers to the total number of
retrieved papers. Recall computes the proportion of relevant papers retrieved
to the total relevant papers in the relevance assessment dataset. As a proxy for
workload, we assess the number of retrieved papers. This number gives us a raw
indication of the effort that authors would need to put into screening the search
results for identifying relevant papers. As previously mentioned, a large number
of retrieved papers will significantly impact the cost and effort required by the
authors and could dictate the feasibility of performing the review.

Notice that we take the number of relevant papers from each SLR dataset as
the gold standard. However, since most SLR datasets include results from mul-

12 Badami et al.

Table 1. Performance of generated queries based on different seed input, compared to
manually formulated queries by SLR authors (#Ret= #Retrieved; #Rel=#Relevant).

Dataset #Rel
BASE-OG GEN-RQ GEN-RQA GEN-ABS-3

#Ret Recall Prec. #Ret Recall Prec. #Ret Recall Prec. #Ret Recall Prec.

SLR1[36] 71 44,431 0.59 0.0009 996 0.37 0.0261 1045 0.40 0.0268 1,220 0.42 0.0246
SLR2[9] 208 5,852 0.50 0.0178 1,650 0.50 0.0630 1,780 0.51 0.0596 540 0.54 0.2074
SLR3[26] 89 3605 0.47 0.0117 552 0.45 0.0725 1,525 0.45 0.0262 1,049 0.37 0.0315
SLR4[10] 23 101 0.95 0.2178 260 0.83 0.0731 260 0.83 0.0731 146 0.87 0.1370
SLR5[12] 160 1,886 0.28 0.0239 13,300 0.24 0.0029 13,300 0.24 0.0029 2,019 0.28 0.0223
SLR6[3] 99 11,713 0.93 0.0079 350 0.80 0.2257 352 0.80 0.2244 220 0.59 0.2636
SLR7[7] 34 1,462 0.76 0.0178 169 0.35 0.0710 261 0.44 0.0575 1,245 0.38 0.0104
SLR8[1] 19 1,652 0.95 0.0109 800 0.74 0.0175 800 0.74 0.0175 205 0.42 0.0390
SLR9[25] 75 144 0.43 0.2222 730 0.63 0.0644 45 0.21 0.3556 79 0.16 0.1519
SLR10[35] 49 82,009 0.71 0.0004 604 0.82 0.0662 27,618 0.84 0.0015 785 0.49 0.0306

Median 2,746 0.66 0.0531 667 0.56 0.0653 923 0.48 0.0421 663 0.42 0.0357

Relative median performance 24.3% 87.7% 121.9% 33.6% 72.8% 79.3% 24.1% 64.1% 66.3%

tiple libraries, we recalculated the number of relevant papers to those that could
be identified by the original query on our target digital library (IEEEXplore).

4.2 Results

Experiment 1 The results of query generation are presented in Table 16, and
the full details of the generated queries are available in the online Appendix.

In comparison to the baseline (BASE-OG), queries generated with the best
variant of our approach (GEN-RQ), achieve 87.7% of the median recall, and
121.57% of the accuracy of the expert queries, with only 24% of the results.

When comparing the impact of the three types of seed, we see the results to
be similar across the various SLRs. However, the most consistent performance
was achieved by GEN-RQ, i.e., it shows higher mean values of precision and
recall with lower-to-comparable numbers of retrieved papers. These results sug-
gest that, with our current approach, RQs are generally better for identify key
concepts for the search query than having one or three relevant abstracts. An
inspection of the results tells us that, in addition to the type of seed (e.g., RQs
or relevant abstracts), the information presented in the seed also impact the
quality of generated queries. For example, in our experimental scenario, RQs are
collected from published SLRs. Thus they are more likely to be properly formed
and representative of the scope of the reviews. In contrast, the randomly selected
relevant abstracts in the GEN-ABS and GEN-RQA approach may contain more
repeating words, possibly introducing noise and reducing the relevance of impor-
tant terms. However, going from a seed with one to three abstracts does show
some performance increase in mean recall albeit with a higher number of results.

A closer look at the generated queries gives us hints into the characteristics of
produced queries. As illustrated in Figure 3A, our approach is effective at iden-
tifying the main query components (e.g., fault, prediction, software). Yet some
refinement (e.g., removing non relevant terms) could improve its performance.

6 We only included the results of three seed types in the table, the full list is available
in Appendix at https://tinyurl.com/496zuar3

Title Suppressed Due to Excessive Length 13

Research Questions

(Fault* OR bug* OR defect*
OR errors OR corrections OR

corrective OR fix*) AND
(Software)

• How does context affect fault prediction?

• Which independent variables should be

included in fault predictions?

• Which modelling techniques perform best

when used in fault prediction?

(mistake OR error OR fault OR defect OR demerit
OR faulting OR break) AND (predict OR

anticipate OR prevision OR foretell OR forecast
OR prognosticate) AND (software OR

software_program OR computer_software OR
software_system OR software_package OR

package)

(software OR software_program OR
computer_software OR software_system OR
software_package) AND (fault OR defect OR

quality OR error-prone) AND (predict OR
assess OR detect)

Original Query Initial generated query (GEN-RQ) Final refined search query (I5)BA

Research Questions

(Fault* OR bug* OR
defect* OR errors OR

corrections OR
corrective OR fix*)

AND (Software)

• How does context affect fault
prediction?

• Which independent variables
should be included in fault
predictions?

• Which modelling techniques
perform best when used in
fault prediction?

(mistake OR error OR fault OR defect
OR demerit OR faulting OR break) AND
(predict OR anticipate OR prevision OR
foretell OR forecast OR prognosticate)
AND (software OR software_program

OR computer_software OR
software_system OR software_package

OR package)

(fault OR defect OR quality OR
error-prone) AND (predict OR

assess OR detect) AND software
OR software_program OR

computer_software OR
software_system OR
software_package)

Original Query Initial generated query Final search query BA

Fig. 3. Example queries generated for SLR2 after the (A) initial query generation step
(GEN-RQ) and (B) final query refinement iteration I5 using certainty sampling

The above tells us that our approach provides a good foundation for generat-
ing queries and improving upon. Having properly formulated research questions
might not be the case in the early stages when planning a literature review pro-
cess. Therefore, the possibility of having relevant abstracts as seeds provides a
solid base for composing and refining search queries.

Experiment 2 The results of the query adaptation and refinement step, for
the uncertainty and certainty sampling, are shown in Table 2. Compared to
the input query generated by GEN-RQ (I0), the final refined queries consis-
tently improved on the recall when applying either of the two sampling methods,
though, the improvements are more pronounced for certainty sampling. However,
the improvements came at the cost of an increase in the number of retrieved re-
sults for 3 of the 5 SLRs. Precision was also improved only in 2 of the 5 SLRs
(refer to the supplementary materials for precision results). Looking at perfor-
mance through the iterations, we can see that uncertainty sampling improves
more slowly, or stalls in terms of recall, compared to certainty sampling. The
increase in the number of papers in search results is also more conservative in the
uncertainty sampling approach. This can be attributed to the fact that negative
samples (irrelevant abstracts) contribute more to removing irrelevant terms.

To contextualise the practical implications of the higher recall at the cost of
more search results, we compare refined queries to the queries formulated by the
SLR authors. When comparing the performance to the baseline query (BASE-
OG), the difference is more noticeable. Certainty sampling was significantly im-
proving (or matching) the recall of the expert formulated queries BASE-OG (Q).
As seen in the grayed out cells, this was achieved while reducing the number of
retrieved papers in two instances (SLR1, SLR2) and with a modest increase in
other cases. The outlier with a significant increase is due to the unusual case of
having only 101 search results in the baseline (SLR4). What these results tell
us is that our approach is able to match or improve the performance of
expert formulated queries when it comes to recall, while adapting to differ-
ent SLRs by learning from author feedback. All of this, reducing at times the
number of results – though results in this regard are inconclusive. Notice that
recall, and in particular avoiding missing out on relevant work, is paramount in
SLRs, and our approach is able to build and refine queries towards this goal.

As illustrated in Figure 3, the refinement process is indeed able to reduce
the non-relevant search terms (e.g., for “fault”, removing “demerit”) and add
relevant terms (e.g., for “fault” adding “quality”) to the query, contributing to
better performance. However, we should also note that the generated query is

14 Badami et al.

Table 2. Performance of the query refinement approach for two competing sampling
methods. Values are shown for the first five iterations (I1 - I5). Performance is compared
to the input query (I↑0) generated by GEN-RQ, and the baseline query (Q↑) BASE-OG.

DS Uncertainty Certainty

Recall I1 I2 I3 I4 I5 I↑0 Q↑ I1 I2 I3 I4 I5 I↑0 Q↑

SLR1 0.37 0.38 0.44 0.44 0.56 51% -5% 0.46 0.51 0.56 0.61 0.66 78% 12%
SLR2 0.51 0.51 0.52 0.52 0.54 8% 8% 0.93 0.95 0.97 0.99 1.00 100% 100%
SLR3 0.45 0.45 0.48 0.55 0.60 33% 28% 0.83 0.88 0.92 0.96 1.00 122% 113%
SLR4 0.83 0.87 0.87 0.87 0.87 5% -8% 0.85 0.85 0.88 0.91 0.95 14% 0%
SLR5 0.24 0.24 0.24 0.26 0.26 8% -7% 0.35 0.35 0.35 0.44 0.53 121% 89%

#Ret I1 I2 I3 I4 I5 I↑0 Q↑ I1 I2 I3 I4 I5 I↑0 Q↑

SLR1 996 862 813 756 952 -4% -98% 1320 992 855 767 705 -29% -98%
SLR2 2052 2038 1904 1760 2362 43% -60% 6893 6861 5528 5477 5161 213% -12%
SLR3 1050 890 1473 1563 1420 157% -61% 6904 7120 7311 7366 7542 1266% 109%
SLR4 315 420 421 495 452 74% 348% 1955 1777 1687 1674 1561 500% 1446%
SLR5 12754 9835 8920 8635 7432 -44% 294% 4667 3733 3237 3352 2423 -82% 28%

currently not the optimal expression of the query, as we can still find redundant
terms (e.g., having “software” makes the term “computer software” redundant).
To inspect all the generated queries, please refer to the online Appendix.

5 Conclusion and Future Work

In summary, our evaluation showed that our approach is able to generate ef-
fective queries from high level expressions of the scope of a review. The initial
query generation and enrichment process is able to generate search queries that
deliver 87.7% of the median recall of the manual approach, with only 24% of the
results (number of items retrieved). While a solid approximation, we observed
this process to be sensible to the amount of information provided in the seed
and limited by the query enrichment methods that might introduce non seman-
tically relevant terms to the query. On this, the proposed query adaptation is
able to significantly improve on the initial generated query and archives the per-
formance (and in some cases improve) of expert formulated queries in the course
of 5 iterations with 5 relevance feedback each. Sampling methods were shown
to have a significant impact, with a sampling strategy biased towards positive
examples found to be the most effective. Overall, our empirical evaluation has
shown the potential of the reinforcement learning approach to adapting search
queries based on author feedback, without the need for domain-specific training.

While this approach and its evaluation showed some initial promise in gen-
erating search queries, there are limitations to the current pipeline and the eval-
uation methods. One limitation of our proposed enrichment approach is when
the extracted terms from the seeds do not have many relevant terms in the
embeddings. Therefore, selecting the most relevant terms becomes uncertain.
Yet, replacing the general-embedding models with a domain-specific embeddings
model could improve query enrichment process. The other limitation in our pro-
posed approach is that pipeline only uses AND and OR operations for generating

Title Suppressed Due to Excessive Length 15

boolean queries, we leave exploring the impact of using NOT operator for gener-
ating and refining queries to future research. One limitation to our experiment is
regarding taking the SLR datasets as gold-standard to measure the query perfor-
mance. It is also required to measure the effectiveness of our proposed approach
in building search queries that could retrieve relevant papers that are missing in
the baseline SLR datasets (e.g., relevant papers that were excluded in published
SLRs by mistake). This also requires further development in the pipeline and a
scale user study. We leave this experiment for future research.

References

1. Adamo, G., Ghidini, C., Di Francescomarino, C.: What is a process model com-
posed of? a systematic literature review of meta-models in bpm. arXiv preprint
arXiv:2011.09177 (2020)

2. Badami, M., Baez, M., Zamanirad, S., et al.: On how cognitive computing will plan
your next systematic review. arXiv preprint arXiv:2012.08178 (2020)

3. Barǐsić, A., Goulão, M., Amaral, V.: Domain-specific language domain analysis and
evaluation: a systematic literature review. Faculdade de Ciencias e Technologia,
Universidade Nova da Lisboa (2015)

4. Brochu, E., Cora, V.M., et al.: A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement
learning. arXiv preprint arXiv:1012.2599 (2010)

5. Carpineto, C., Romano, G.: A survey of automatic query expansion in information
retrieval. Acm Computing Surveys (CSUR) 44(1), 1–50 (2012)

6. van Dinter, R., Tekinerdogan, B., Catal, C.: Automation of systematic literature
reviews: A systematic literature review. Information & Soft. Tech. p. 106589 (2021)

7. Frank, M., Hilbrich, M., Lehrig, S., Becker, S.: Parallelization, modeling, and per-
formance prediction in the multi-/many core area: A systematic literature review.
In: 2017 IEEE 7th International Symposium on Cloud and Service Computing
(SC2). pp. 48–55. IEEE (2017)

8. Garousi, V., Felderer, M.: Experience-based guidelines for effective and efficient
data extraction in systematic reviews in software engineering. In: Proc. of EASE’17.
pp. 170–179 (2017)

9. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature
review on fault prediction performance in software engineering. IEEE Transactions
on Software Engineering 38(6), 1276–1304 (2011)

10. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE transactions on cloud computing 1(2), 142–157 (2013)

11. Kim, Y., Seo, J., Croft, W.B.: Automatic boolean query suggestion for professional
search. In: Proceedings of SIGIR. pp. 825–834 (2011)

12. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman,
S.: Systematic literature reviews in software engineering–a systematic literature
review. Information and software technology 51(1), 7–15 (2009)

13. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering (2007)

14. Kohavi, R., Longbotham, R., Sommerfield, D., et al.: Controlled experiments on
the web: survey and practical guide. DMKD 18(1), 140–181 (2009)

15. Kuzi, S., Shtok, A., Kurland, O.: Query expansion using word embeddings. In:
Proc. of CIKM. pp. 1929–1932 (2016)

16 Badami et al.

16. Lee, G.E., Sun, A.: Seed-driven document ranking for systematic reviews in
evidence-based medicine. In: SIGIR. pp. 455–464 (2018)

17. Li, H., Scells, H., Zuccon, G.: Systematic review automation tools for end-to-end
query formulation. In: Proc. 43rd Int. ACM SIGIR Conf. on Research and Devel-
opment in Information Retrieval. pp. 2141–2144 (2020)

18. Manning, C.D., Surdeanu, M., et al.: The stanford corenlp natural language pro-
cessing toolkit. In: Proc. of ACL. pp. 55–60 (2014)

19. Marcos-Pablos, S., Garćıa-Peñalvo, F.J.: Decision support tools for slr search string
construction. In: Proc. of TEEM’18. pp. 660–667 (2018)

20. Mergel, G.D., Silveira, M.S., da Silva, T.S.: A method to support search string
building in systematic literature reviews through visual text mining. In: Proc. of
the 30th Annual ACM Symposium on Applied Computing. pp. 1594–1601 (2015)

21. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words
and phrases and their compositionality. In: NeurIPS. pp. 3111–3119 (2013)

22. Miller, G.A.: WordNet: An electronic lexical database. MIT press (1998)
23. Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A.: Rayyan—a web and

mobile app for systematic reviews. Systematic reviews 5(1), 210 (2016)
24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-

sentation. In: Proc. of EMNLP. pp. 1532–1543 (2014)
25. Qin, C., Eichelberger, H., Schmid, K.: Enactment of adaptation in data stream

processing with latency implications—a systematic literature review. Information
and Software Technology 111, 1–21 (2019)

26. Radjenović, D., Heričko, M., Torkar, R., Živkovič, A.: Software fault prediction
metrics: A systematic literature review. Information and software technology 55(8),
1397–1418 (2013)

27. Robertson, S.: Understanding inverse document frequency: on theoretical argu-
ments for idf. Journal of documentation (2004)

28. Russo, D., Van Roy, B., Kazerouni, A., et al.: A tutorial on thompson sampling.
arXiv preprint arXiv:1707.02038 (2017)

29. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback.
Journal of the American society for information science 41(4), 288–297 (1990)

30. Scells, H., Zuccon, G.: Generating better queries for systematic reviews. In: ACM
SIGIR. pp. 475–484 (2018)

31. Scells, H., Zuccon, G., Koopman, B.: Automatic boolean query refinement for
systematic review literature search. In: WWW. pp. 1646–1656 (2019)

32. Scells, H., Zuccon, G., Koopman, B.: A comparison of automatic boolean query for-
mulation for systematic reviews. Information Retrieval Journal 24(1), 3–28 (2021)

33. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT (2018)
34. Tabebordbar, A., Beheshti, A., Benatallah, B., et al.: Feature-based and adaptive

rule adaptation in dynamic environments. DSE 5(3), 207–223 (2020)
35. Teixeira, E.N., Aleixo, F.A., de Sousa Amâncio, F.D., OliveiraJr, E., Kulesza, U.,

Werner, C.: Software process line as an approach to support software process reuse:
A systematic literature review. Information and Software Technology 116, 106175
(2019)

36. Wahono, R.S.: A systematic literature review of software defect prediction. Journal
of Software Engineering 1(1), 1–16 (2015)

37. Wallace, B.C., Small, K., Brodley, C.E., et al.: Who should label what? instance
allocation in multiple expert active learning. In: SDM. pp. 176–187. SIAM (2011)

38. Williams, J.J., Kim, J., Rafferty, A., et al.: Axis: Generating explanations at scale
with learnersourcing and machine learning. In: L@Scale. pp. 379–388 (2016)

	Systematic Literature Review Search Query Refinement Pipeline: Incremental Enrichment and Adaptation

