
Adaptive Search Query Generation and Refinement in

Systematic Literature Review

Maisie Badamia,∗, Boualem Benatallahb,a, Marcos Baezc

aUniversity of New South Wales (UNSW) Australia
bDublin City University Ireland

cBielefeld University of Applied Sciences Germany

Abstract

Systematic literature reviews (SLRs) are a central part of evidence-based re-
search, which involves collecting and integrating empirical evidence on spe-
cific research questions. A key step in this process is building Boolean search
queries, which are at the core of information retrieval systems that support
literature search. This involves turning general research aims into specific
search terms that can be combined into complex Boolean expressions. Re-
searchers must build and refine search queries to ensure they have sufficient
coverage and properly represent the literature. In this paper, we propose an
adaptive query generation and refinement pipeline for SLR search that uses
reinforcement learning to learn the optimal modifications to a query based on
feedback from researchers about its performance. Empirical evaluations with
10 SLR datasets showed our approach achieves comparable performance to
queries manually composed by SLR authors. We also investigate the impact
of design decisions on the performance of the query generation and refine-
ment pipeline. Specifically, we study the effects of the type of input seed, the
use of general versus domain-specific word embedding models, the sampling
strategy for relevance feedback, and number of iterations in the refinement
process. Our results provide insights into the effects of these choices on the
pipeline’s performance.

Keywords:
Systematic Reviews, Query Enrichment, Query Adaptation, Reinforcement
Learning, Word Embedding

∗Corresponding author
Email address: m.badami@unswalumni.com (Maisie Badami)

Preprint submitted to Information Systems April 16, 2023

© 2023 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0306437923000674
Manuscript_4d2cdb71813d1891648965f2e29e63d8

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0306437923000674

1. Introduction

Systematic literature reviews (SLRs) offer robust and transferable evi-
dence for evaluating and interpreting relevant research on a particular topic [1].
They establish the groundwork for future research by enabling researchers to
systematically identify, evaluate, and synthesize all relevant research evidence
on a particular topic, in order to answer research questions in a transparent
and systematic manner [2]. Given their demonstrated value, SLRs are be-
coming a popular type of publication in empirical research domains such as
evidence-based software engineering [1]. Identifying relevant studies is a cru-
cial step in the SLR process, as it can impact the overall quality and workload
of the review. This step is guided by the definition of research questions that
set the scope for the entire SLR [1, 2]. Researchers capture this scope by
creating Boolean search queries for scientific digital libraries [1].

The appropriateness of the search query to capture relevant studies is
crucial for ensuring that the SLR accurately synthesizes the literature down-
stream of the process [3]. It also greatly impact the workload as researchers
need to screen the volume of returned results to filter out irrelevant work.
Consequently, a significant portion of the SLR effort goes into identifying
relevant studies [4]. In addition, SLR authors might have limited knowledge
of the review topic and the search terms at the beginning of the process, and
primary studies themselves may use different terminology to refer to similar
concepts [5]. These factors make building proper SLR search queries a chal-
lenging task and a potential point of failure, which has led to research on
automating query generation for SLR search. Existing solutions have focused
on automatically building search queries (e.g., [6, 7]) or automatically refin-
ing existing search queries (e.g., [3, 8]), but these methods are often limited
to specific research domains (e.g., medical domain). This limitation imposes
challenges for generalizing and adopting these methods in different SLRs
and research domains. In addition, these methods rely on machine learning
algorithms (e.g., classifiers) that require domain-specific training data. Fur-
thermore, these methods require authors to compose and provide an initial
query, which poses challenges for researchers who have limited knowledge
about building search queries, especially those who are new to a research
topic [5]. Therefore, there is a need for solutions that can adapt better to
different domains and SLRs while supporting authors in the early stage of

2

the review process when knowledge is still limited.

RQ1. How does
context affect
software fault
prediction?
…

Initial Query Building
Identify main query parts
from seed

Query Enrichment
Expand with similar search terms, identified
via a Knowledge base and Word Embeddings

(Software) AND

(Fault) AND

(Predict)

(Software OR Application OR…) AND

(Fault OR Error OR Demerit OR…) AND

(Predict OR Estimate OR …)

Q

Retrieve and Sampling
Input query is executed over the
Digital Library, and results are
sampled for relevance feedback

Search
Results

Sampling strategy

Sample
Abstracts

Sample Abstracts Relevance Feedback

Query Adaptation

fault++

demerit-

error++

Accumulated
Rewards

Estimation, Query
Modification

Rewards are assigned to terms extracted from
abstracts with feedback. Performance of query
terms is estimated to modify query

Q’

Refined
Query

Terms added or removed

SLR
Author

Seed

RQs Relevant
papers

Input
Query Q’

(Software OR Application OR…) AND

(Fault OR Error OR Demerit OR…) AND

(Predict OR Estimate OR …)

Query refinement iterations

Figure 1: High-level overview of the query building and refinement pipeline. The pipeline
takes a seed as input, representing the SLR scope. The initial step builds a query based
on the seed, enriched with similar terms. The second step iteratively refines the query
using author feedback on search result samples.

We addressed gaps in effectively constructing SLR search queries by de-
vising an adaptive query building and refining pipeline that relies on a rein-
forcement learning approach to incrementally refine a generated search query
based on authors’ feedback (see Figure 1). More precisely, given a seed ex-
pressing the scope of the literature review (e.g., research questions or a set of
relevant abstracts), the pipeline automatically generates a search query from
the initial seed. Through an interactive process, the pipeline then leverages
author feedback on the query search results to incrementally improve the gen-
erated query. The aim is to maximize recall while minimizing the workload in
later screening steps. The rationale behind our approach is to leverage SLR
authors’ knowledge about the scope of the review and relevance of selected
studies to refine SRL search queries. The contributions of this paper are as
follows:

• We propose a data-driven pipeline that exploits a natural language
description of the SLR scope to generate an initial search query and
enrich it with semantically related and diverse terms;

3

• We devise an incremental and adaptive process to refine search queries
for SLRs. The proposed reinforcement learning approach learns to
modify and adjust the search queries by observing the relevance feed-
back provided by researchers on query search results;

• We empirically show, in an evaluation with 10 SLR datasets, that the
proposed pipeline can generate effective search queries (in terms of
recall and workload) that have a performance comparable to the queries
that domain experts manually compose;

• We devise experiments and provide evidence for the impact of mean-
ingful design decisions in the query generation and refinement process.
This includes the impact of the type of input seed and the use of general
and domain-specific word embedding models in the initial query gen-
eration step. We also assess the impact of sampling strategies adopted
for relevance feedback and the number of iterations in the refinement
process.

The present paper is an extended journal version of our previous research
paper [9], which expands on our previous work in the following ways: (i) We
provide a more comprehensive review of the literature, which includes a back-
ground section with an overview of the SLR query generation process and
related concepts. We expanded the related work with a more detailed review
of the research on SLR query building support and introduced a new discus-
sion on Human-in-the-Loop approaches that are meaningful to position the
design decisions in the pipeline. (ii) We present a more detailed description of
our approach, including the description of adopted techniques, algorithm def-
initions, and more examples to accompany the SLR query generation process.
(iii) We performed a new experimental evaluation that assesses the impact of
general versus domain-specific word embedding models in the query building
process. This is an important dimension that contributes with new insights
into the generalization of our approach and findings and sheds new light into
the implications for pipeline design.

The rest of this paper proceeds as follows. Related work is given in
Section 2. Section 3 presents our proposed approach. The experiments and
evaluation are presented in Section 4. And finally, Section 7 concludes the
paper.

4

2. Background and Related Work

This section reviews the existing literature on SLR search query building
support. We provide a general background on the query definition process for
SLRs and then address two specific tasks that are central to ongoing research
in SLR query building support: i) automatic techniques for generating search
queries, and ii) automatic refinement of SLR search queries. Additionally,
we discuss Human-in-the-loop techniques in SLR automation, which inform
the approach adopted in our proposed pipeline.

2.1. Background

Researchers use available information about the scope of the review to
build SLR search queries. This information can be found in the review pro-
tocol or a collection of known relevant studies (i.e., quasi gold standard
(QGS) [10]) [11, 12]. They extract high-level concepts that describe the
topic and scope of the review from available knowledge, such as review ques-
tions. One example of a technique used in medical domain and software
engineering [1] is PICO, which stands for Population (or Problem), Interven-
tion, Comparison, and Outcomes. Each component of PICO defines specific
aspects of the research questions, which can be used to define search queries
and data extraction coding schemes. Researchers use these queries to search
for relevant studies on SLR information retrieval (IR) systems, such as digital
libraries, which are built upon standard Boolean retrieval models [13, 14]. As
shown in Figure 2, researchers refine initial queries by adding more synonyms
or relevant terms as they inspect search results and identify relevant studies.
The goal of the query building process is to produce a search query that can
maximize recall while minimizing the workload in later screening steps.

While most of the literature on SLR automation focuses on study selec-
tion (see [15] for a review), interest in SLR search query building support
has recently sparked. These efforts can be categorised into two main groups:
i) automatic techniques for generation search queries, and ii) automatic re-
finement of SLR search queries. Next, we discuss these categories.

2.2. SLR Search Queries Generation

Several studies explored approaches to support researchers in building
search queries for SLRs. Existing approaches use information from the review
protocol (e.g., review questions, inclusion and exclusion criteria) or a set
of relevant abstracts to extract relevant terms that can help with building

5

Figure 2: The search query building and refining process, currently a manual SLR task.

search queries [7, 16, 17, 6]. These techniques mostly rely on text analysis
and mining techniques (e.g., terms TF-IDF) to find the most relevant terms
from given corpus [6, 7]. Some techniques leverage visualization to suggest
terms that researchers can use to manually refine search queries [7].

Recently, tools have also been developed based on the above techniques [18].
For instance, 2dSearch1 [18] provides a method to build search queries lever-
aging visualisation techniques. In 2dSearch the search query is represented
in a visual query canvas, where search terms are objects and the relationship
between them is expressed in terms of nesting or co-occurrence. In enabling
researchers to build queries using this visual paradigm, the aim is to guide
them towards the correct definition of queries, provide them a clear semantic
representation of search expressions, and enable the reuse query definitions
over different scientific databases. While formulating and reusing queries is
simpler in this approach, a researcher new to the topic (and to the process)

1https://app.2dsearch.com/

6

is still required to formulate the query, with the challenges that this poses.
Another tool is QueryVis [19] which focuses on characterizing contribu-

tions of query clauses to the accuracy of a search query. It annotates the
query with the number of relevant studies retrieved with each query clause.

As described above, these approaches and tools focus mainly on suggest-
ing terms to help researchers build queries and do not provide an end-to-end
solution for query adaptation and refinement. Yet, the techniques serve as
an inspiration for building the query generation component.

2.3. SLR Search Queries Refinement

Existing automatic query refinement techniques comprise two main steps:
i) generating alternative queries from an initial query, and ii) predicting
the performance of generated queries and selecting queries with the best
performance. To generate alternative queries from an initial query, these
techniques leverage query refinement techniques such as query expansion,
query reduction and query rewriting [3, 20, 8, 21].

To predict the performance of generated queries, they leverage machine
learning algorithms (e.g., classification models) that learn to rank generated
queries based on their performance [3, 20, 8]. These studies used different
query performance predictors as features to learn machine learning models
and measure the performance of generated queries [8, 22, 3].

Kim et al. [8] proposed an approach for building alternative queries from
an initial query. Their system contains two main tasks: generating boolean
queries and ranking generated queries. They used information from pseudo-
labeled citations (i.e., the top-k documents retrieved by a baseline system)
to build a decision tree that can decide whether a document is relevant or
not. Each path from the root to the node in the tree defines an alternative
query. Afterward, each path from the root to a positive leaf node (indicating
possible relevance) formulates a boolean query. For learning a model to rank
and suggest the best query from the set of alternative queries, they utilized
features from pre-retrieval QPPs (e.g., the similarity of the generated query
to the original query) and post-retrieval QPPs (e.g., the query result set
including the items in the baseline query retrieval set). The authors com-
pared this query expansion technique to the contemporary query expansion
techniques and experimentally showed the formers’ superiority.

For instance, Scells et al. [3] proposed a query refinement technique that
relies on query expansion and reduction. They focus on building alternative
queries from a query composed by expert users. The alternative queries

7

are automatically ranked based on the predicted performance, without user
intervention, in a one-step refinement process. They used heuristics (e.g.,
relevance of a new citation to a query) to train their query ranking models.
They found that their proposed approach could generate boolean queries
with better recall and precision than previous baseline queries. They also
demonstrated that the nearest neighbour model outperformed other models
in ranking queries with better precision than the original queries.

While valuable, existing proposed solutions for query building and refine-
ment in SLRs, they have important limitations: i) adopting these techniques
for different research domains and SLRs is complex and time-consuming, as
they often rely on machine learning techniques that require domain-specific
training data; and ii) they require authors to provide an initial query, which
poses challenges to researchers who have less knowledge about building search
queries and especially who are new to the research topic [23, 24].

2.4. Human-in-the-loop Automation Techniques for SLRs

Our systematic literature review results in [25] revealed that developing
automation techniques for SLRs face important obstacles. One significant ob-
stacle is the absence of sufficient training data for learning machine-based al-
gorithms at the beginning for different SLRs or different research domains. To
overcome this limitation, some existing approaches leverage human-machine
collaboration techniques (e.g., active learning techniques [26, 27, 4, 28, 29,
30]). These techniques attempt to continuously learn to classify or rank ci-
tations using feedback from oracles (experts or crowds). The active learning
approach has shown significant success in reducing citation screening work-
load and cost [29, 31, 32]. Due to this success, some tools (e.g., Rayyan2)
have also been implemented to support researchers in citation screening.

Outside SLR automation techniques, reinforcement learning is widely
used in automating complex tasks [33, 34, 35, 36]. Multi-armed bandit mod-
els have shown success in various domains such as content recommendation
[33], gaming [34], online learning [35] and data curation [36]. For instance,
using a bayesian multi-armed-bandit, Tabebordbar et al. [36] proposed an
approach that dynamically adjusts rules that annotate data in social media
such as Twitter and Facebook. Williams et al. [35] leveraged a combination of
crowdsourcing and bayesian multi-armed-bandit algorithm to generate expla-

2https://www.rayyan.ai/

8

nations to present to learners in problem solving settings (e.g., math problem
solving).

Building upon the finding of empirical studies (e.g., [37]) on SLR automa-
tion, We build up previous research in automatic query expansion [38, 39] and
reinforcement learning [36, 35] to propose a novel pipeline for building and
refining SLR search queries. This pipeline learns to refine automatically gen-
erated queries using researchers feedback about the query retrieved results.
The pipeline is usable in different domains and SLRs. Moreover, we devised
novel search term enrichment algorithm leveraging both knowledge-based
and embedding-based techniques. This alleviates an important challenge re-
ported by survey participants in an empirical study on SLR automation [25],
regarding the difficulties they face in building search queries. These difficul-
ties stem mostly from inconsistent and often overlapping terminologies used
by different research communities to describe concepts.

The authors of a recent study[40] examined the effectiveness of reinforce-
ment learning models, using ChatGPT, in creating Boolean queries for sys-
tematic review literature searches. Their findings revealed that ChatGPT
can generate queries that result in high search precision but at the cost of
the recall. Ultimately, this study highlights ChatGPT’s potential to gener-
ate efficient Boolean queries for systematic review literature searches. As
ChatGPT can produce queries with high precision, it is a valuable resource
for researchers performing systematic reviews, particularly for time-sensitive
rapid reviews where sacrificing recall for increased precision is acceptable.

3. Incremental Query Building And Refining Pipeline

In our proposed query generation and refinement approach, the aim is
to utilize the minimal information available to the researchers regarding the
scope of a review to build initial search queries. Subsequently, through a re-
finement process based on researcher feedback, the initially generated queries
are incrementally refined and improved. In our approach, the performance of
a search query depends on the effectiveness of a query to i) retrieve relevant
literature as defined by the scope of the review (recall), and ii) minimise
the (unnecessary) screening effort incurred by the number of studies in the
retrieved results. It is worth noting that striking this balance is important as
very “open” search queries may be effective in retrieving the majority of rele-
vant studies but may also yield a large number of search results. Conversely,

9

narrow search queries may be more manageable but risk missing relevant
studies.

To accomplish this goal, we devised the query building and refinement
pipeline as illustrated in Figure 3. In summary, the pipeline receives a seed
representing the scope of the SLR (e.g., research questions). Then, the Ini-
tial Query Builder component utilizes the seed to extract candidate terms for
constructing an initial query. The Query Enrichment component expands the
initial query by enriching the terms using knowledge and embedding-based
techniques. The generated query is subsequently automatically executed on
a digital library (DL) search engine to retrieve the search results. The Query
Adaptation component then employs relevance feedback from researchers on
the search results to assess the performance of the executed query. Finally,
this component uses these observations to refine the query employing a rein-
forcement learning approach. In the following sections, we elaborate on each
component of our proposed pipeline.

Figure 3: Architecture of the Query Building and Refinement Pipeline

10

3.1. Initial Query Builder

The first component of the pipeline is the Initial Query Builder which
utilizes a high-level expression of the scope of an SLR to construct an initial
query. The input to this component is a seed, which can be partially defined
research question(s) or multiple relevant abstracts. This component first re-
moves non-contributing terms (e.g., stop words and special characters). Next,
it extracts all the terms (nouns, verbs) from the given seed using Stanford’s
CoreNLP library [41]. This component relies on TF-IDF to select terms for
constructing an initial query when the seed contains more than one docu-
ment. When the input seed contains only one document (e.g., one relevant
abstract), the term frequency (TF) is used to select top-n relevant terms.
The selected terms at this stage represent concepts that should be present
in relevant studies (i.e., matching results). We refer to these terms as main
terms of the query. Therefore, Initial Query Builder constructs the initial
query by joining the main terms using the ‘AND’ operator. For instance,
for given research question RQ:“Which techniques perform best when used to
predict software fault?” as the seed, the Initial Query Builder extracts the
main terms and generates an initial query denoting: q = (software AND fault
AND predict).

The generated initial query search results will be narrow and not suitable
for recall-oriented SLR search. The reason is that authors of scientific litera-
ture use different terminologies to express the same concept [42]. To address
this, we devised the pipeline with a query enrichment component which we
explain next.

3.2. Query Enrichment

We devised the pipeline with two query enrichment techniques: i) a
knowledge-based approach for finding the synonyms of main query terms [43],
and ii) an embedding approach to find alternative terms that are relevant to
the query terms but may not be synonyms to the main terms [43]. Algo-
rithm 1 shows the sketches of these two query enrichment techniques.

Knowledge-base Enrichment. This component identifies all the syn-
onyms of a given query term using WordNet [44] and constructs a synonym
set for each query term, containing the term and its synonyms. WordNet con-
tains English words into groups of synonyms, called synsets [44]. One word
in WordNet may have more than one synset. WordNet records the semantic
relations between the synsets that describe the specific concept (hyponym)
or generalized concept (hypernym) of a synset [44].

11

Algorithm 1: Search Query Enrichment

QueryEnrichment
inputs : Initial Boolean Query (q);
output: Enriched Boolean Query (q∗);
// Define variables

wordnet synonyms: Synonyms from WordNet;
word embeddings: Word embedding terms set;
q = t1 ∧ t2 ∧ ... ∧ tn;
w ∈ word embeddings ;
T ← {t1, t2, ..., tn};
// Iterate through main terms

foreach t ∈ T do
// Find synonyms from WordNet

sets.Add(st) where st ∈ wordnet synonyms;
// Find relevant terms from word embeddings

foreach w ∈ word embeddings do

if cos(⃗sets, w⃗) > α then
candidate sett.Add(w)

// Select top-n enriched terms

enriched set← topn w ∈ candidate sett in decreasing order
by cos(q⃗, w⃗);

// Construct enriched query

foreach t ∈ T do
foreach w ∈ enriched set do

Component t← ∨w
q∗ ← ∧Component t;

// Return enriched query

return q∗;

To enrich a search term, this component selects a synset from WordNet
that has a hyponym similar to other terms in the query. For instance, in the
initial query q (from our ongoing example), the term “fault” has a synset rep-
resenting the concept of “geography” and another representing the concept of
“programming”. The synset representing “programming” is selected because
it has a similar hyponym to the term “software” in the query. As a result, for

12

each term in query q, the following synset is selected for fault:{fault, defect,
error,...}.

Figure 4: Query enrichment process

This enrichment approach improves the query’s retrieval performance [43].
However, the knowledge-based thesauri often do not contain all the seman-
tically relevant terms that are not synonyms [45]. Therefore, to further im-
prove the query performance in retrieving relevant studies, we introduced
an additional enrichment technique. This technique enhances the query per-
formance in retrieving studies that use alternative terms to express similar
concepts [46]. Figure 4 illustrates how related terms are chosen and selected
by this component.

Embedding-based Enrichment. This enrichment component builds upon

13

a word embedding approach [45]. It uses a word embeddings model to identify
the most relevant terms for each synonym set and collects these terms into an
enriched set. First, it calculates the mean vector of each synonym set using
the vectors of all terms within the synonym set (⃗sets = 1/|sets|

∑
s∈sets s⃗),

where sets denotes a synonym set. Next, the component uses the cosine
similarity score between embedding terms and the mean vector of each syn-
onym set (⃗sets) to find the top-n candidate terms in the embedding that have
similarity to the synonym set. These top-n selected candidate terms form a
candidate set (W) for each synonym set. Finally, to select the most similar
terms from the candidate set, the Embedding Enrichment ranks the terms in
the candidate set (W) based on their cosine similarity to the mean vector of
the initial query. We chose to rank the terms in the candidate sets (W) based
on their similarities to the query rather than their synonym sets (sets).In do-
ing so, we ensured that terms more relevant to the query are ranked higher
and selected for enrichment [39]. A query’s mean vector is calculated by
averaging the vectors of all terms in the query (q⃗ = 1/|q|

∑
t∈q q⃗), where q

denotes a query. Therefore, the score of the term w from the candidate sets
(W) is calculated as score(w, q) = cos(q⃗, w⃗). w⃗ denotes vector of a term w
in a candidate set (W). In our experiment, a minimum similarity threshold
(α) is used to select the top-n terms. These top-n terms form an enriched
set for each corresponding synonym set.

Query Composer. Once all the enriched sets are generated, the Query
Composer component constructs an enriched query using Boolean logic op-
erators. The terms in the enriched sets serve as alternatives to the main
terms in the initial query. Therefore, the Query Composer assembles the
alternative terms in the enriched set using OR operator, forming a query
Component for each enriched set. For instance, as shown in Figure 5, the
main term predict and its enriched set {predict, estimate, model} result in a
Boolean expression: (predict OR detect OR model). The final query is then
formed by concatenating all the components, using the ‘AND’ operator. For
the initial query q, the enriched query q∗ is generated as: q∗ = (software
OR program...) AND (fault OR defect OR...) AND (predict OR detect...).
At this stage, the queries are built using only OR and AND operations.
Incorporating other operations (e.g., NOT) is left to future extensions.

3.3. Query Adaptation

Query adaptation is a common practice in SLR searches. Researchers
modify search queries based on the knowledge gained by screening more

14

Figure 5: The enriched query is formed by concatenating the query parts using AND
operator

candidate papers over time. If a new semantically similar term is found in a
newly discovered relevant paper, they modify the search query by adding the
new term to the query or replacing the former insufficient terms. In practice,
this process can require many iterations and is prone to errors. Moreover,
due to the large and ever-expanding number of publications, researchers may
spend significant time evaluating and appraising search results and adapting
the queries accordingly [14].

To assist researchers in this time-consuming task, we formulated the query
adaptation problem in the form of a reinforcement learning model, which
learns to adapt queries by observing changes in the retrieved studies over
time. Our approach relies on a multi-armed algorithm [47, 36]. In a multi-
armed bandit, the algorithm continually chooses which action to take and
each action results in a reward based on an underlying probability distribu-
tion [48, 33]. The algorithm learns to take the actions that maximise the ac-
cumulative rewards by repeating the action and observing the results [48, 35].

In the following, we provide a detailed description of the components of
our proposed query adaptation approach.

Observation. The first step in our proposed query adaptation approach
is observation, which initially executes the enriched query and retrieves the
search results. It then gathers relevance feedback from researchers on a
sample of search results to later inform the estimation component about
its observations. This step consists of three components: i) search and
retrieve; ii) sampling; and iii) relevance feedback.

3.3.1. Search and Retrieve.

This component provides an interface that facilitates searching across
various digital libraries. It contains adapters for executing search queries by

15

calling digital library APIs.3 Search and Retrieve executes the queries and
retrieves the results for further processing.

3.3.2. Sampling

In the systematic review, researchers examine the query performance by
screening a subset of retrieved papers. Moreover, they use a set of relevant
studies that are already known (QGS) and check whether the search could
retrieve the QGS studies [49]. We aim to improve the retrieval performance
of the search query by learning about the relevance of a sample set from the
query search results. For this, we introduce a sampling mechanism to the
pipeline. The Sampling component is used to select S items from the search
results based on a learning strategy introduced next.

To select samples from the retrieved result, this component first extracts
all the terms (nouns, verbs) from the retrieved abstracts using Stanford’s
CoreNLP library [41]. Next, it generates the corresponding word vectors for
these terms using an embedding model (e.g., Glove [50]). Sampling then
averages all these vectors to generate the mean vector of each abstract. The
Sampling component also calculates the mean vector of the query by av-
eraging corresponding vectors of all its terms. It uses the cosine similarity
metric to calculate the similarity between the vector of each abstract and the
vector of the query: Score(a, q∗) = Sima = cos(q⃗∗, a⃗) (see Figure 6). Here,
a⃗ represents the vector of the abstract, and q⃗∗ is the vector of the executed
query. The sampling then ranks the abstracts in descending order based on
their similarity score.

Finally, Sampling selects a set of samples based on a sampling strategy.
The sampling strategy is applied either by seeking feedback on uncertain or
certain abstracts. To this end, a lower η and a higher ζ similarity score
thresholds define the sampling strategy. In sampling based on uncertainty,
abstracts are those that the pipeline is less confident about their relevance.
In other words, those that fall between the similarity score thresholds (η <
Sima < ζ) are selected for receiving feedback. In contrast, sampling based on
certainty seeks confirmation on abstracts with the highest similarity scores
(Sima > ζ). The choice for the sampling method is a configuration parameter
of the pipeline.

3Application Programming Interface

16

Figure 6: On how the relevance of an abstract is computed as the cosine similarity between
the vectors of abstracts and the query. In this figure, the distance between A1 and q (θ)
is smaller than A2 and q distance (β). A2 could be considered as an irrelevant abstract to
the query as the distance is large.

3.3.3. Relevance Feedback

The Relevance Feedback component presents the selected samples to re-
searchers for receiving feedback. Leveraging a binary relevance feedback
method [51, 52], researchers can screen the sample abstracts and label them
as relevant or irrelevant, based on whether they fit the scope of the review
or not. Researchers can also add samples of QGS relevant abstracts that
were not present in the retrieved result (or in the sample set). They can
also screen additional abstracts from the search results. The abstracts with
feedback are then used in the next component of the pipeline to modify the
search query in order to improve its retrieval performance.

Estimation. The next step in our proposed query adaptation is estimation,
which computes the retrieval performance of the terms within the query.
A term’s performance is estimated based on its accumulated rewards and
demotes over time. The query adaptation process is thus iterative, i.e., a
term that is deemed as uncertain based on its current performance, might
still be incorporated into the query in future iterations - depending on changes
in its estimated performance. In our query adaptation approach, which we
formulated as a multi-armed bandit problem, each term in a query represents
an arm of the bandit. Therefore, the Bayesian algorithm will afford more
confidence for either keeping or replacing a term. Next, we elaborate on
the steps of estimation: i) reward/demote schema and ii) terms performance
estimator.

17

Reward/Demote Scheme. The Reward/Demote Scheme component keeps records
of the accumulated rewards and demotes for each query term. It also finds
candidate terms in the relevant abstracts that are not yet part of the query
but have shown positive performance (candidate terms). This component
makes use of the following sub-components:

• Reward/Demote Calculator. Each time new relevant/irrelevant ab-
stracts are received, the Rewards/Demotes calculator extracts all terms
(nouns, verbs) from each abstract, using Stanford’s CoreNLP [41]. It
then updates the rewards and demotes of the query terms, based on
their presence in relevant and irrelevant abstracts. The query terms
have a default value of 1 for reward and demote in the first iteration.
Each time a query term appears in a new irrelevant abstract, it is de-
moted (dt = +1). In turn, every time a query term appears in a new
relevant abstract, it is rewarded (rt = +1). This algorithm updates the
term rewards and demotes in each iteration. Therefore, after n itera-
tions the accumulated rewards and demotes for query term t would be:
rt =

∑n−1
i=1 rti and dt =

∑n−1
i=1 dti.

• Candidate Terms Finder. This sub-component identifies new can-
didate search terms. These are the terms that frequently appear in
relevant abstracts but are not part of the query yet. When all the
terms are extracted from relevant abstracts, Candidate Terms Finder
uses the TF-IDF of those terms as a filtering mechanism and selects
candidate terms when their TF-IDF score is above a minimum thresh-
old. Terms above this threshold are added to a candidate terms set.
These candidate terms are then used by the Query modifier compo-
nent when a term in a query must be replaced with a more suited
term. The terms accumulated rewards and demotes are used by the
Terms Performance Estimator to estimate the retrieval performance of
each term.

Terms Performance Estimator. Having the terms with rewards and demotes,
the only remaining question is: “how to choose a term for adding to or
removing from a query?”. We could address this question by relying on
heuristic rules, such as adding the term with the highest rewards or removing
one with the highest demotes. However, heuristic rules raise the questions:
“how many relevant abstracts should contain a term to determine the term

18

as a suitable choice for a query?” or “ how many papers should be reviewed
to find the optimal number of relevant papers?”.

We used Thompson Sampling [53], in which the above question is an-
swered by representing uncertainty as probability distribution [53, 35]. In
our query adaptation problem, Thompson Sampling relies on a policy for
deciding which term should be modified in a query. We utilized Thompson
Sampling because it has provided near-optimal regret4 bound in previous
research [54, 36]. It has been successfully utilized in a range of applica-
tions, such as educational systems [35], gaming platforms [34], website opti-
misation [55], recommendation systems [56] and rule-based data annotation
system [36].

The algorithm estimates a probability distribution, θ=Beta(rt, dt), for
candidate term t using its accumulated rewards (rt) and demotes (dt). This
distribution shows the expected reward when a particular term is chosen and
also how variable reward is [35]. These features can affect the action that
is taken (removing or adding a term). Each distribution has an initial value
set based on a prior. The prior indicates our opinion about the performance
of a term that has not yet been used in a query (candidate term). This
distribution probability value is updated based on the algorithm observation
(i.e., whether the term appears on relevant or irrelevant abstracts).

Each time the algorithm receives terms (with rewards and demotes), it
updates their θ value based on their rewards and demotes.

When the algorithm obtains a set of candidate terms C = {t1, t2, ..., tn}
along with their accumulated rewards and demotes, it updates the terms
probability distributions, θ = {θ1, θ2, ..., θn}, where 0 < θ < 1 using Bayes
rule as:

P (θ|t) =
P (t|θ)P (θ)

P (t)
. (1)

It is assumed that each term t in iteration i has an initial prior of β(1, 1).
If β(rt, dt) is the β value for term t in iteration i, then after observing a win
r = 1, its β value would be β(rt + 1, dt), conversely after observing a loss
d = 1 its β value will be: β(rt, dt + 1). The candidate term is then selected
according to its probability (θt) that satisfies:

argmaxt P (θ|t) = E[reward|θt]p(θt|A) (2)

4The per-iteration regret is the mean of rewards of a choice with the best rewards and
the action taken by the algorithm [53].

19

where A is the set of observed abstracts with feedback (relevant and irrelevant
abstracts) and θt is the parameters of the Beta distribution for term t. It
is worth noting that our query adaptation problem is a Bernoulli problem,
meaning that the generated random variable by each term has only two
possible outcomes: 0 or 1 and the value of Beta(α, β) is within the interval
[0, 1]. Therefore, instead of the result varying per term, the probability of
term generating rewards varies [57].

Query Modifier The final component of our query adaption is the Query
Modifier, which modifies the query by adding to or removing terms from the
query based on their observed performance. A Boolean query is a conjunc-
tion of query components, where each expression can have K terms that are
connected using the OR operator. For instance, as illustrated in Figure 7,
query q has two components and each expression has two terms (e.g., (t1 OR
t2)). We refer to terms in an expression as sibling terms (e.g., t1 is a sibling
to t2, and t3 is a sibling to t4). We define a query clause cl as a conjunction of
a set of terms that are joined with OR operator(e.g., (t1 AND t3)). In other
words, clauses are built by rewriting [58, 59] the query that contains the
query components. We define a performance value p for each query clause cl
as the accumulated rewards and demotes of all the terms within the query
clause.

Figure 7: Query components and query clauses

To adapt a query, the Query Modifier first identifies query clauses with
performance values below a minimum threshold γ. The threshold charac-
terizes the minimum accumulative rewards and demotes that a query clause

20

should have to be considered efficient for query retrieval performance. After
identifying inefficient query clauses, the Query Modifier finds the term in the
clause that makes the clause inefficient. It compares the performance of the
term with its sibling terms’ performance. The Query Modifier will replace
a term in the query clause if the number of relevant abstracts in which the
term appears is below the average number of relevant abstracts in which its
sibling terms appear. This indicates that the term is not useful in retrieving
relevant abstracts. Moreover, the Query Modifier replaces this term with a
candidate term estimated to yield the highest probability distribution (θ) by
the Bayesian algorithm.

For instance, as illustrated in Figure. 8, suppose after i iterations the
Query Modifier identifies that t3 is insufficient in retrieving relevant papers.
Thus, the Query Modifier removes t3 and replaces it with t6, a candidate
term that has the highest probability value θ in iteration i.

Figure 8: Query modifier removes and adds terms in iteration i

3.4. Stopping Condition

The issue of determining the appropriate stopping point for the adapta-
tion process is pertinent to the learning of RL algorithms. While there are
currently no standard stopping rules for RL, some ad-hoc guidelines exist.
However, these can lead to suboptimal results, such as overly long circuits or
premature termination [60]. The optimal stopping problem is a mathemati-
cal framework that can be used to address the stopping issue in a stochastic
system [61]. In this problem, at each interval, the decision maker must decide
when to halt the process and receive a reward based on the current state or
continue without immediate reward and potentially stop at a later time.

The stopping problem in the SLR query refinements problem can be tack-
led through various strategies, such as monitoring the query until it stabilizes,

21

indicating that no further improvements can be made. Alternatively, the de-
cision to end the adaptation can be left to the human, in this case, the SLR
author. In our experiments, we have adopted the latter approach.

4. Evaluation

The main goal of the evaluation was to assess the two primary design
decisions in our proposed pipeline: (i) automatic generation of the search
query from the initial user input, and (ii) incremental refinement of the
initial search query by leveraging user feedback. To this end, we designed
three experiments that evaluated the initial and refined according to relevant
performance metrics.5.

In particular, (i) we investigate the effect of the information within the
initial seeds on the automatic generation of search queries. We sought to
evaluate the ability of the Initial Query Builder to construct search queries
similar to those in our gold standard dataset, which consists of search queries
from published SLRs. (ii) we analyze the impact of using general and domain-
specific embedding models, assessing their impact on query enrichment and
the effects on the performance of the generated queries. (iii) We evaluate
the query adaptation and refinement in terms of its contribution to query
performance while examining the impact of important decisions such as the
number of iterations and sampling strategy.

4.1. Methods

Datasets. We performed the evaluation on SLR datasets that were made
publicly available by their authors. To identify these datasets, we looked for
SLRs in computer science that published their search and screening data, by
systematically searching datasets at Zenodo and Figshare.6 As a result, we
identified 10 SLRs that included research questions, the SLR search query,
the search result dataset, and the final relevance assessment. Of these SLRs,
5 also included the relevance assessment from the title and abstract screening
phase. We consider the SLR authors’ relevance assessment to be the gold

5For full details about the datasets, experimental details, and in-depth results, please
refer to our supplementary material at https://tinyurl.com/496zuar3 and implemen-
tation details on https://tinyurl.com/2rp4m5cs

6Popular dataset repositories, at https://zenodo.org and http://figshare.com

22

label in our experiments. In Table 1 we list the datasets employed in our
experiments, along with some descriptive statistics.

Table 1: SLR datasets adapted in our experimental evaluation, along with descriptive
statistics

Reference Years
Searched

#Candidate
Papers

#Relevant
Papers

Experiment
No.

SLR1[62] 2000-2013 7002 59 1,2,3
SLR2[63] 2000-2013 8911 104 1,2,3
SLR3[64] 1963-2011 6000 48 1,2,3
SLR4[65] 2005-2013 1351 27 1,2,3
SLR5[66] 2004-2007 1705 45 1,2,3
SLR6[67] 2009-2014 384 36 1,3
SLR7[68] 1996-2015 54 34 1,3
SLR8[69] 2001-2019 5177 19 1,3
SLR9[70] 2006-2018 244 75 1,3
SLR10[71] 2014-2019 1585 49 1,3

Experiment 1- Query generation, and impact of seed. In this ex-
periment, we assessed our approach to generating the search query directly
from an initial seed, by applying the query generation and enrichment com-
ponents. To understand the impact of the amount of information in the
seed on these components, we tested three conditions having:i) only research
questions (GEN-RQ), ii) abstracts from (1 or 3) relevant papers (GEN-
ABS(1,3)); iii) and a combination including the research questions and one
abstract (GEN-RQA). Notice that we only used the abstracts of the relevant
papers for building the seeds, as they capture a meaningful summary of the
paper. We generated search queries for the 10 SLR datasets, taking the seed
from each SLR. For comparison, we took as baseline (BASE-OG) the perfor-
mance of the original search queries from each SLR adapted and scoped to
our target digital library and the fields currently supported (title, abstract).
In these experiments we adopted a general word embedding model (Glove)
in the query enrichment process. The detailed list of conditions compared
during this experimental evaluation is shown in Table 2.

Experiment 2- Query generation, and impact of Word Embeddings
models. Another important dimension to analyse when assessing the per-
formance of the query generation, is the impact of the underlying word em-
bedding model used for the query enrichment. We focus in particular on the

23

Table 2: Type of queries built using different seeds in the experiments

Seed Description

GEN-RQ These queries are built using only the research questions as the
seed.

GEN-RQA These queries are built using the research questions and only
one randomly selected relevant abstract as the seed.

GEN-ABS These queries are built using only one randomly selected rele-
vant abstract as the seed.

GEN-ABS-3 These queries are built using three randomly selected relevant
abstracts as the seed.

impact of using general word embedding models versus domain-specific word
embedding models. One of the concerns in using general word embeddings is
that models might not contain enough similar words for specific words from
technical documents. For instance, the word “fork” in a software engineering
context will have a specific meaning and set of similar words. Using a word-
embedding model that is trained on the software engineering context would
result in similar words such as {forking, fork/exec, forks, /execve, vfork} [72]
that reflect the technical meaning of the word. However, using a general
word-embedding model such as Google News word2vec [73], would result
in similar words such as {pancake turner, forking, wooden skewer, ricer},
alluding to the utensil. In this experiment, we aim at comparing the per-
formance of these two types of models, as they can lead to implications for
the design, generalisation and required investment (e.g., in training) on the
pipeline, when working with SLRs in new domains. Thus, for the general
embedding model condition, we take the results from the first experiment
which generated results using Glove. For the domain-specific word embed-
ding model condition, we rely on a pre-trained domain-specific embedding for
software engineering, namely SO embeddings [72]7. This model is a word2vec
model that is pre-trained on 15GB of Stack Overflow8 posts. To make both
conditions comparable, we adopt the same experimental conditions as in Ex-
periment 1, except for the word embedding model as explained before.

7The pre-trained model is stored in a .bin file (of approximate size 1.5 GB) which can
be accessed at this link: http://doi.org/10.5281/zenodo.1199620

8https://stackoverflow.com

24

Experiment 3- Query adaptation and refinement. Here, we evaluated
the performance of the query adaptation based on author relevance feedback
when incrementally refining the initial search query. To do so, we took the
initial queries generated with research questions (GEN-RQ) in Experiment 1.
Then we simulated the authors’ feedback by leveraging the relevance assess-
ment already present in the SLR datasets, i.e., screening relevance feedback
made strictly based on the title and abstract.

We assessed the changes in query performance within 5 iterations, where
for the sampling method we tested two different approaches: i) uncertainty
sampling, where abstracts for feedback are drafted from those where the
pipeline is less confident about their relevance (low similarity score); ii) cer-
tainty sampling, where abstracts are drafted from those the pipeline is most
certain about their relevance (high similarity score). The idea of these two
methods was to test the impact of the class distribution (ratio relevant to
irrelevant papers) in authors’ feedback since these contribute differently to
the query adaptation. The uncertainty sampling returns predominately ir-
relevant papers, while the certainty sampling returns predominantly relevant
papers.

For both sampling methods, we used 0.80 as the highest and 0.30 as the
lower similarity thresholds for estimating relevance. The sampling size in the
experiment was five papers for each SLR and in each iteration. We compared
the performance of the query adaptation conditions against the initial gen-
erated search query (GEN-RQ) and the original search query (BASE-OG).

Data processing and analysis. In our analysis, we relied on metrics
to help us capture how effective search queries are in identifying relevant
papers while lowering the workload of the screening process. To capture the
effectiveness we relied on standard precision and recall metrics applied to
this context. Precision measures the proportion of retrieved relevant papers
to the total number of retrieved papers. Recall computes the proportion
of relevant papers retrieved to the total relevant papers in the relevance
assessment dataset.

As a proxy for workload, we assess the number of retrieved papers. This
number gives us an indication of the effort that authors would need to put
into screening the search results for identifying relevant papers. As previously
mentioned, a large number of retrieved studies will significantly impact the
cost and effort required by the authors and could dictate the feasibility of
performing the review. Notice that we take the number of relevant studies

25

Table 3: Performance of generated queries based on different seed input, compared to
manually formulated queries by SLR authors (#Ret= #Retrieved; #Rel=#Relevant).

DS
BASE-OG GEN-RQ GEN-RQA GEN-ABS-3
Rel #Ret Rec. Prec. #Ret Rec. Prec. #Ret Rec. Prec. #Ret Rec. Prec.

SLR1 71 44,431 0.59 0.0009 996 0.37 0.0261 1045 0.40 0.0268 1,220 0.42 0.0246
SLR2 208 5,852 0.50 0.0178 1,650 0.50 0.0630 1,780 0.51 0.0596 540 0.54 0.2074
SLR3 89 3605 0.47 0.0117 552 0.45 0.0725 1,525 0.45 0.0262 1,049 0.37 0.0315
SLR4 23 101 0.95 0.2178 260 0.83 0.0731 260 0.83 0.0731 146 0.87 0.1370
SLR5 160 1,886 0.28 0.0239 13,300 0.24 0.0029 13,300 0.24 0.0029 2,019 0.28 0.0223
SLR6 99 11,713 0.93 0.0079 350 0.80 0.2257 352 0.80 0.2244 220 0.59 0.2636
SLR7 34 1,462 0.76 0.0178 169 0.35 0.0710 261 0.44 0.0575 1,245 0.38 0.0104
SLR8 19 1,652 0.95 0.0109 800 0.74 0.0175 800 0.74 0.0175 205 0.42 0.0390
SLR9 75 144 0.43 0.2222 730 0.63 0.0644 45 0.21 0.3556 79 0.16 0.1519
SLR10 49 82,009 0.71 0.0004 604 0.82 0.0662 27,618 0.84 0.0015 785 0.49 0.0306
Median 2,746 0.66 0.0531 667 0.56 0.0653 923 0.48 0.0421 663 0.42 0.0357
Relative median performance 24.3% 85.6% 122.9% 33.6% 72.8% 79.3% 24.1% 64.1% 66.3%

from each SLR dataset as the gold standard. However, since most SLR
datasets include results from multiple libraries, we recalculated the number
of relevant papers to those that could be identified by the original query on
our target digital library (IEEEXplore).

4.2. Results

Experiment 1. The results of query generation are presented in Table 39,
and the full details of the generated queries are available in the online Ap-
pendix. In comparison to the baseline (BASE-OG), queries generated with
the best variant of our approach (GEN-RQ), achieve 85.6% of the median
recall, and 122.9% of the accuracy of the expert queries, with only 24% of
the results.

When comparing the impact of the three types of seed, we see the re-
sults to be similar across the various SLRs. However, the most consistent
performance was achieved by GEN-RQ, i.e., it shows higher mean values of
precision and recall with lower-to-comparable numbers of retrieved papers.
These results suggest that, with our current approach, RQs are generally bet-
ter for identifying key concepts for the search query than having one or three
relevant abstracts. An inspection of the results tells us that, in addition to
the type of seed (e.g., RQs or relevant abstracts), the information presented
in the seed also impacts the quality of generated queries. For example, in our

9We only included the results of three seed types in the table, the full list is available
in Appendix at https://tinyurl.com/496zuar3

26

experimental scenario, RQs are collected from published SLRs. Thus they
are more likely to be properly formed and representative of the scope of the
reviews. In contrast, the randomly selected relevant abstracts in the GEN-
ABS and GEN-RQA approach may contain more repeating words, possibly
introducing noise and reducing the relevance of important terms. However,
going from a seed with one to three abstracts does show some performance
increase in mean recall albeit with a higher number of results (GEN-ABS-1 :
Recall 58.8%, #Ret 21.5%; GEN-ABS-3 : Recall 64.1%, #Ret 24%).

A closer look at the generated queries gives us hints into the characteris-
tics of produced queries. As illustrated in Figure 9A, our approach is effective
at identifying the main query components (e.g., fault, prediction, software).
Yet some refinement (e.g., removing non-relevant terms) could improve its
performance.

Research Questions

(Fault* OR bug* OR defect*
OR errors OR corrections OR

corrective OR fix*) AND
(Software)

• How does context affect fault prediction?

• Which independent variables should be

included in fault predictions?

• Which modelling techniques perform best

when used in fault prediction?

(mistake OR error OR fault OR defect OR demerit
OR faulting OR break) AND (predict OR

anticipate OR prevision OR foretell OR forecast
OR prognosticate) AND (software OR

software_program OR computer_software OR
software_system OR software_package OR

package)

(software OR software_program OR
computer_software OR software_system OR
software_package) AND (fault OR defect OR

quality OR error-prone) AND (predict OR
assess OR detect)

Original Query Initial generated query (GEN-RQ) Final refined search query (I5)BA

Research Questions

(Fault* OR bug* OR
defect* OR errors OR

corrections OR
corrective OR fix*)

AND (Software)

• How does context affect fault
prediction?

• Which independent variables
should be included in fault
predictions?

• Which modelling techniques
perform best when used in
fault prediction?

(mistake OR error OR fault OR defect
OR demerit OR faulting OR break) AND
(predict OR anticipate OR prevision OR
foretell OR forecast OR prognosticate)
AND (software OR software_program

OR computer_software OR
software_system OR software_package

OR package)

(fault OR defect OR quality OR
error-prone) AND (predict OR

assess OR detect) AND software
OR software_program OR

computer_software OR
software_system OR
software_package)

Original Query Initial generated query Final search query BA

Figure 9: Example queries generated for SLR2 after the (A) initial query generation step
(GEN-RQ) and (B) final query refinement iteration I5 using certainty sampling

The above tells us that our approach provides a good foundation for
generating queries and improving upon them. Having properly formulated
research questions might not be the case in the early stages when planning
a literature review process. Therefore, the possibility of having relevant
abstracts as seeds provide a solid base for composing and refining search
queries.

Experiment 2. Next, we investigated how the use of a domain-specific em-
bedding model in the query enrichment component may affect the generation
of initial queries. For this, we compare the outcomes from Experiment 1 gen-
erated using Glove (general embedding model) with the performance of the
queries generated with SO embeddings, a domain-specific embedding model
for software engineering. The results of this experiment are presented in Ta-
ble 410. In comparison to the baseline (BASE-OG), queries generated with

10The details of the generated queries is presented in the online appendix available at

27

the best variant of our approach (GEN-RQ), achieve 76.8% of the median
recall of the manual approach, with 65% of the results (number of retrieved
articles).

Table 4: Performance of generated queries based on different seed input, compared to
manually formulated queries by SLR authors (#Ret= #Retrieved; #Rel=#Relevant)
using SO embeddings. We include the median performance across SLRs for the domain-
specific embeddings condition (Mean SO) as well as the mean for the general embeddings
condition (Mean Glove) from Experiment 1

DS
BASE-OG GEN-RQ GEN-RQA GEN-ABS-3
Rel #Ret Rec. Prec. #Ret Rec. Prec. #Ret Rec. Prec. #Ret Rec. Prec.

SLR1 71 44,431 0.59 0.0009 2,602 0.32 0.0088 7,024 0.45 0.0046 11,195 0.45 0.0029
SLR2 208 5,852 0.50 0.0178 2,469 0.43 0.0360 43 0.44 0.1395 552 0.51 0.1920
SLR3 89 3605 0.47 0.0117 634 0.42 0.0584 835 0.44 0.0467 1,074 0.39 0.0326
SLR4 23 101 0.95 0.2178 1,007 0.83 0.0189 1,007 0.83 0.0189 2,060 0.87 0.0097
SLR5 160 1,886 0.28 0.0239 20,738 0.24 0.0018 13,326 0.20 0.0024 2,019 0.28 0.0223
SLR6 99 11,713 0.93 0.0079 351 0.74 0.2080 351 0.80 0.2251 4,011 0.23 0.0090
SLR7 34 1,462 0.76 0.0178 91 0.29 0.1099 262 0.44 0.0573 80 0.59 0.7250
SLR8 19 1,652 0.95 0.0109 1,657 0.68 0.0078 800 0.74 0.0175 120 0.42 0.0667
SLR9 75 144 0.43 0.2222 1,033 0.63 0.0455 32 0.21 0.5000 79 0.13 0.1266
SLR10 49 82,009 0.71 0.0004 23,235 0.82 0.0017 24,965 0.54 0.0016 770 0.53 0.0338
Med. SO 2,746 0.66 0.0531 1,345 0.53 0.0275 818 0.45 0.0328 922 0.44 0.0332
Med. Glove 2,746 0.66 0.0531 667 0.56 0.0653 923 0.48 0.0421 663 0.42 0.0357

Looking at the impact of the amount of information in the seed, we can see
that the queries generated with the domain-specific model exhibit a relative
performance that is consistent with Experiment 1. This suggests that the
amount of information in the seed has a visible and consistent impact on the
performance of the query, for the conditions under study, independently of
the model.

When comparing the impact of the model on the performance, we can
see that - surprisingly - the general embedding condition performs consis-
tently better than the domain-specific embedding model, for GEN-RQ and
GEN-RQA, and partially for GEN-ABS-3 (except for recall). A qualitative
inspection of the generated queries revealed some potential explanations for
these results, which we describe by referring to the search terms in Table 5.
SO embeddings were better at expanding on technical terms. As seen in
the table, technical terms such as “fault” were expanded into terms such as
“bug”, “debug” and others, which are in this context closer than the ones
produced by the general model (e.g., “guilt” or “fracture”). However, when it

https://tinyurl.com/496zuar3

28

came to general terms such as “predict”, the general model provided a much
richer set of options. Ultimately, the ability to produce domain-specific terms
was overshadowed by the inability to work with general concepts, which are
also present in query components. It should be noted, however, that the SO
embedding model is trained on StackOverflow, and not on software engineer-
ing papers.

The implications of these results for pipeline design pipeline are two-fold.
i) General models can provide solid performance in the generation of the
initial query, despite their inability to capture domain-specific terms. Relying
on domain-specific models does not necessarily guarantee better performance,
especially if the training data does not reflect the use case. ii) There is
an opportunity to combine general embedding models and domain-specific
models to make up for the limitations of both approaches. However, the goal
at this step is the generation of an initial query that can be refined based on
user feedback.

Table 5: Example of search terms along with the enriched list of words using Glove and
SO embeddings

Term Search terms using Glove Search terms using SO
fault guilt, fracture, defect, mistake,

demerit
error, defect, bug, mistake, de-
bug, break

predict anticipate, foresee, prevision,
foretelling, forecasting, prog-
nostication

guess, prognosis, forecast

model role model, modelling, poser,
exemplary, good example

framework, simulation, pat-
tern, simulate, mock up

Experiment 3 The results of the query adaptation and refinement step, for
the uncertainty and certainty sampling, are shown in Table 6. Compared
to the input query generated by GEN-RQ (I0), the final refined queries
consistently improved on the recall when applying either of the two sampling
methods, though, the improvements are more pronounced for certainty sam-
pling. However, the improvements came at the cost of an increase in the
number of retrieved results for 3 of the 5 SLRs. Precision was also improved
only in 2 of the 5 SLRs (refer to the supplementary materials for precision
results). Looking at performance through the iterations (see Figure 4.2, we
can see that uncertainty sampling improves more slowly, or stalls in terms of

29

Table 6: Performance of the query refinement approach for two competing sampling meth-
ods. Values are shown for the first five iterations (I1 - I5). Performance is compared to

the input query (I↑0) generated by GEN-RQ, and the baseline query (Q↑) BASE-OG.

DS Uncertainty Certainty

Recall I1 I2 I3 I4 I5 I↑0 Q↑ I1 I2 I3 I4 I5 I↑0 Q↑

SLR1 0.37 0.38 0.44 0.44 0.56 51% -5% 0.46 0.51 0.56 0.61 0.66 78% 12%
SLR2 0.51 0.51 0.52 0.52 0.54 8% 8% 0.93 0.95 0.97 0.99 1.00 100% 100%
SLR3 0.45 0.45 0.48 0.55 0.60 33% 28% 0.83 0.88 0.92 0.96 1.00 122% 113%
SLR4 0.83 0.87 0.87 0.87 0.87 5% -8% 0.85 0.85 0.88 0.91 0.95 14% 0%
SLR5 0.24 0.24 0.24 0.26 0.26 8% -7% 0.35 0.35 0.35 0.44 0.53 121% 89%

#Ret I1 I2 I3 I4 I5 I↑0 Q↑ I1 I2 I3 I4 I5 I↑0 Q↑

SLR1 996 862 813 756 952 -4% -98% 1320 992 855 767 705 -29% -98%
SLR2 2052 2038 1904 1760 2362 43% -60% 6893 6861 5528 5477 5161 213% -12%
SLR3 1050 890 1473 1563 1420 157% -61% 6904 7120 7311 7366 7542 1266% 109%
SLR4 315 420 421 495 452 74% 348% 1955 1777 1687 1674 1561 500% 1446%
SLR5 12754 9835 8920 8635 7432 -44% 294% 4667 3733 3237 3352 2423 -82% 28%

recall, compared to certainty sampling. The increase in the number of papers
in search results is also more conservative in the uncertainty sampling ap-
proach. This can be attributed to the fact that negative samples (irrelevant
abstracts) contribute more to removing irrelevant terms.

To contextualise the practical implications of the higher recall at the cost
of more search results, we compare refined queries to the queries formulated
by the SLR authors. When comparing the performance to the baseline
query (BASE-OG), the difference is more noticeable. Certainty sampling
was significantly improving (or matching) the recall of the expert-formulated
queries BASE-OG (Q). As seen in the grayed-out cells, this was achieved
while reducing the number of retrieved papers in two instances (SLR1, SLR2)
and with a modest increase in other cases. The outlier with a significant
increase is due to the unusual case of having only 101 search results in the
baseline (SLR4). What these results tell us is that our approach is able to
match or improve the performance of expert formulated queries
when it comes to recall, while adapting to different SLRs by learning from
author feedback. All of this, reducing at times the number of results – though
results in this regard are inconclusive. Notice that achieving a high recall,
while reducing the risk of missing relevant work, is an important aspect of
SLRs, and our approach is able to build and refine queries to support this
goal.

As illustrated in Figure 9, the refinement process is indeed able to reduce
the non-relevant search terms (e.g., for “fault”, removing “demerit”) and add

30

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Iteration

R
ec

al
l

Uncertainty Sampling

SLR1
SLR2
SLR3
SLR4
SLR5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Iteration

Certainty Sampling

Figure 10: Performance of sampling methods on recall, over iterations I0-I5

relevant terms (e.g., for “fault” adding “quality”) to the query, contributing
to better performance. However, we should also note that the generated
query is currently not the optimal expression of the query, as we can still
find redundant terms (e.g., having “software” makes the term “computer
software” redundant). To inspect all the generated queries, please refer to
the online Appendix.

5. Discussion

In this discussion section, we delve into key insights derived from our
experimental results and their implications for SLR query search formula-
tion. By examining the impact of different seed types, word embedding
models, and query refinement strategies, our findings contribute to a better
understanding of the potential benefits and limitations of our approach in
addressing the challenges of the SLR search process.

Importance of properly formulated research questions. The re-
sults highlight the importance of properly formulated research questions in
the early stages of planning a literature review. If available, RQs can achieve
a median recall of 86% with 24% of the results compared to the expert-
formulated queries. Thus, the type of seed does have an impact, and it
motivates further exploration of the specific factors determining the increase
in performance.

Value of abstracts as seeds for researchers with limited context.
While queries generated using abstracts as seeds may not be as effective as
those generated from research questions, they still offer a solid starting point

31

for the query refinement process. This is particularly valuable for users with
limited domain expertise, allowing them to iteratively compose and refine
search queries while benefiting from the improvements observed during the
refinement process. Our analysis also indicates that increasing the number of
input abstracts can lead to better query performance, which could improve
the starting point for refining their search queries if authors have more sample
papers available.

Impact of Domain-specificity of Word Embeddings on Query
Generation. We recognize that a model trained on academic papers in a
specific domain (e.g., software engineering, medicine) might provide better
semantic representations, capturing the nuances of academic research in the
a specific domain. Developing such a model from scratch would be chal-
lenging due to the need for a large corpus of academic papers and computa-
tional resources for each domain. Nevertheless, our findings are encouraging,
demonstrating the feasibility of leveraging general models. This is particu-
larly relevant with the advent of powerful large language models (LLMs) like
GPT-4, which are pre-trained on massive datasets from diverse sources.

Added value of query adaptation and refinement. The exper-
imental results show that our pipeline is able to produce refined queries
that can match or improve the performance of expert-formulated queries
in terms of recall while adapting to different SLRs by learning from author
feedback. Certainty sampling resulted in a better approach, featuring a more
pronounced improvement over the 5 iterations of our experimental settings.
Indeed, the rate of improvement we observed suggests that there is an op-
portunity for further improvement beyond the 5 iterations, which should be
an aspect to address when studying stopping conditions.

6. Limitations

While this approach and its evaluation showed some initial promise in
generating search queries, there are limitations to the current pipeline and
the experimental evaluation that we address below.

Query expressiveness limitations. The current pipeline generates
and refines queries based on the AND and OR boolean operations. We
do not currently support the NOT operator, and we acknowledge that this
impacts the query expressiveness and is likely to affect the performance of
the formulated queries. However, our approach was able to match, and in
some cases, improve the performance compared to expert-formulated queries

32

even with this simple setup, indicating room for improvement. We leave
the exploration of the impact of using the NOT operator for generating and
refining queries to future research.

Relative importance of research studies. Our approach does not
consider the relative importance of papers based on factors such as type and
source. Considering the relative importance of papers could allow authors to
give more authority to journal papers or top venues. While interesting, in-
vestigating these aspects was deemed outside the scope of our current paper.

SLR datasets as gold-standard for query performance. The adopted
SLR datasets could have potentially missed relevant work that was correctly
retrieved by the generated queries but deemed as false positives in our ex-
perimental setting. To address this, it is important to consider more compre-
hensive studies that include actual assessment of relevance by humans (e.g.,
authors) or running actual pilots with ongoing SLRs. We leave these more
comprehensive studies to future work.

Simulation of query refinement with SLR datasets. The query
refinement step was simulated by leveraging the relevant assessment already
made by SLR authors and present in the dataset. While this was a valuable
strategy to explore the performance of the refinement approach, we acknowl-
edge that it has potential limitations. For example, the simulation might not
reflect the actual behavior of authors in refining the search and interacting
with search results. Therefore, pilots with real users in an actual refine-
ment process will be required to analyze the impact on real settings and user
behavior.

7. Conclusion and Future Work

In summary, our evaluation showed that our approach is able to generate
effective queries from high-level expressions of the scope of a review. The
initial query generation and enrichment process is able to generate search
queries that deliver 87.7% of the median recall of the manual approach,
with only 24% of the results (number of items retrieved). While a solid
approximation, we observed this process to be sensible to the amount of in-
formation provided in the seed and limited by the query enrichment methods
that might introduce non-semantically relevant terms to the query. On this,
the proposed query adaptation is able to significantly improve on the initial
generated query and archives the performance (and in some cases improve)
of expert formulated queries in the course of 5 iterations with 5 relevance

33

feedback each. Sampling methods were shown to have a significant impact,
with a sampling strategy biased toward positive examples found to be the
most effective. Overall, our empirical evaluation has shown the potential of
the reinforcement learning approach to adapt search queries based on author
feedback, without the need for domain-specific training.

We consider the following areas for future work as particularly critical to
guarantee quality and sustainability in the longer term:

Understanding the acceptance of the community of SLRs that
are partially automated using the available support tools and tech-
niques. Understanding the readiness of the research community to launch a
machine-based SLR has been discussed in other works. We believe it would
also be an interesting research direction to investigate the acceptance of the
community of SLRs that are partially automated using the available sup-
port tools and techniques. Thus, as we develop more effective automated
solutions, the question still remains whether and to what extent we should
embrace automation in our community, calling us to reflect on the conse-
quences and revisit traditional notions such as authorship, accountability,
and ethics in general. A starting point is to provide guidelines to tool de-
velopers and researchers. The guidelines could propose how to design and
validate such automation techniques and set the desired governance models
for the responsible use of automation, especially AI-enabled automation in
the SLR process.

A future work direction for us is to evaluate the acceptance of the pro-
posed approach by SLR authors. We believe that providing the proposed
pipeline in the form of a service to conduct a study with researchers who
plan to conduct an SLR is a major step to improve the SLR process.

Exploration of techniques that have shown success in automa-
tion of SLR tasks to automate unexplored tasks. The majority of
adopted automation techniques for SLR tasks focus on adopting the usual
machine learning approach (e.g., text classification). However, these tech-
niques may not hold enough capabilities to aid complex tasks(e.g., summa-
rizing research findings). The reason behind this might be that these tasks
are highly cognitive and require acute human judgment. Moreover, humans
are superior to machines in fulfilling these tasks, whereas in other tasks that
require consistent iterations (e,g., study selection) the machines outperform
human capacity. We believe that future research should address these gaps
through cognitive computing systems, to promote collaboration between hu-
mans and machines [74, 2].

34

These human-machine techniques have shown promising results in ob-
taining efficiency and effectiveness in automating specific SLR tasks (e.g.,
active learning for citation screening [4, 75]). We believe that leveraging
these techniques to support other complex research tasks (e.g., coding in
qualitative data analysis, summarizing research findings, seeking evaluation
of research techniques) is clearly transformable. This can provide researchers
with similar experience that search engines and social media platforms pro-
vide for Web search and people interactions, but for performing research tasks
and collaborating with others, reducing information overload and automat-
ing repetitive tasks. The challenge is to support researchers in improving
research processes including the SLR process with automation while ensur-
ing compliance with policies and rules (e.g., research ethics and privacy).
This capability can be powered by a number of AI-enabled techniques such
as query intend discovery, entity mention discovery, knowledge graphs and
deep learning algorithms (e.g., to support entity and relationships-based in-
dexing over research studies).

Gathering empirical evidence on the comparative performance
of existing models. Our literature review on automation techniques for
facilitating SLR, indicates that there is not enough evidence on how ma-
chine learning models compare in terms of their performance when reporting
the results. Empirical studies that look at systematically comparing models
or tools under relevant domain-specific conditions for SLR automation are
necessary. These studies could help to have a clear understanding of the
strengths and limitations of these techniques. Besides, researchers’ perspec-
tives about adopting these techniques are missing. A more human-centered
approach to the development and evaluation of the models could help to
shape more efficient and realistic SLR automation techniques.

Evaluation frameworks and reporting guidelines to ensure the
strength of evidence, transparency, and replicability of results. One
limitation that affects the appraisal of the proposed techniques (e.g, machine
learning models) in automating SLR tasks is that the models are treated
as a ‘black box’ when presented in the studies(e.g., [76, 77, 78, 27]). For
instance, the data preparation steps (e.g., selecting the train datasets and
feature extractions) are not clearly described. Even though the majority
of the studies provide evaluation results, they do not explain how and why
they used a certain evaluation method. One potential research direction that
could benefit SLR automation research is developing benchmarks and frame-
works for evaluating, reporting, and comparing SLR automation techniques.

35

These frameworks should take into account the specifics of the SLR process,
current practices, barriers to proper experimental evaluation, and opinions of
the community, so as to provide value and facilitate adoption. For example,
frameworks could include datasets for training machine learning algorithms
and standard evaluation metrics for reporting the results. The goal is to
facilitate the adoption of the developed techniques, standardise the sharing
of outcomes, models, and datasets when reporting the results. It could also
help to conduct more experimental studies for appraising SLR automation
techniques across different research domains (e.g, medical and software engi-
neering).

References

[1] B. Kitchenham, S. Charters, Guidelines for performing systematic liter-
ature reviews in software engineering (2007).

[2] M. Badami, M. Baez, S. Zamanirad, et al., On how cognitive computing
will plan your next systematic review, arXiv preprint arXiv:2012.08178
(2020).

[3] H. Scells, G. Zuccon, B. Koopman, Automatic boolean query refinement
for systematic review literature search, in: WWW, 2019, pp. 1646–1656.

[4] B. C. Wallace, K. Small, C. E. Brodley, et al., Who should label what?
instance allocation in multiple expert active learning, in: SDM, SIAM,
2011, pp. 176–187.

[5] H. Li, H. Scells, G. Zuccon, Systematic review automation tools for
end-to-end query formulation, in: Proc. 43rd Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 2020, pp. 2141–
2144.

[6] S. Marcos-Pablos, F. J. Garćıa-Peñalvo, Decision support tools for slr
search string construction, in: Proc. of TEEM’18, 2018, pp. 660–667.

[7] G. D. Mergel, M. S. Silveira, T. S. da Silva, A method to support search
string building in systematic literature reviews through visual text min-
ing, in: Proc. of the 30th Annual ACM Symposium on Applied Com-
puting, 2015, pp. 1594–1601.

36

[8] Y. Kim, J. Seo, W. B. Croft, Automatic boolean query suggestion for
professional search, in: Proceedings of SIGIR, 2011, pp. 825–834.

[9] M. Badami, B. Benatallah, M. Baez, Systematic literature review search
query refinement pipeline: Incremental enrichment and adaptation, in:
International Conference on Advanced Information Systems Engineer-
ing, Springer, 2022, pp. 129–146.

[10] H. Zhang, M. A. Babar, P. Tell, Identifying relevant studies in software
engineering, Information and Software Technology 53 (6) (2011) 625–
637.

[11] J. Clark, Systematic reviewing, in: Methods of clinical epidemiology,
Springer, 2013, pp. 187–211.

[12] E. Hausner, C. Guddat, T. Hermanns, U. Lampert, S. Waffenschmidt,
Development of search strategies for systematic reviews: validation
showed the noninferiority of the objective approach, Journal of clini-
cal epidemiology 68 (2) (2015) 191–199.

[13] D. A. Buell, A general model of query processing in information retrieval
systems, Information Processing & Management 17 (5) (1981) 249–262.

[14] H. Scells, G. Zuccon, B. Koopman, A comparison of automatic boolean
query formulation for systematic reviews, Information Retrieval Journal
24 (1) (2021) 3–28.

[15] R. van Dinter, B. Tekinerdogan, C. Catal, Automation of systematic
literature reviews: A systematic literature review, Information & Soft.
Tech. (2021) 106589.

[16] S. Karimi, S. Pohl, F. Scholer, et al., Boolean versus ranked querying
for biomedical systematic reviews, BMC 10 (1) (2010) 1–20.

[17] D. Martinez, S. Karimi, L. Cavedon, T. Baldwin, Facilitating biomed-
ical systematic reviews using ranked text retrieval and classification,
in: Australasian Document Computing Symposium (ADCS), 2008, pp.
53–60.

[18] T. Russell-Rose, P. Gooch, 2dsearch: A visual approach to search strat-
egy formulation (2018).

37

[19] H. Scells, G. Zuccon, searchrefiner: A query visualisation and under-
standing tool for systematic reviews, in: Proc. of CIKM, 2018, pp.
1939–1942.

[20] H. Scells, G. Zuccon, , et al., Integrating the framing of clinical questions
via pico into the retrieval of medical literature for systematic reviews,
in: Proc. of CIKM, 2017, pp. 2291–2294.

[21] H. Scells, G. Zuccon, Generating better queries for systematic reviews,
in: ACM SIGIR, 2018, pp. 475–484.

[22] H. Scells, L. Azzopardi, G. Zuccon, et al., Query variation performance
prediction for systematic reviews, in: SIGIR, 2018, pp. 1089–1092.

[23] M. Riaz, M. Sulayman, N. Salleh, et al., Experiences conducting sys-
tematic reviews from novices’ perspective, in: EASE, 2010, pp. 1–10.

[24] J. C. Carver, E. Hassler, E. Hernandes, N. A. Kraft, Identifying bar-
riers to the systematic literature review process, in: 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, IEEE, 2013, pp. 203–212.

[25] M. Badami, Automated and improved search query effectiveness design
for systematic literature reviews, Ph.D. thesis, UNSW Sydney (2021).

[26] M. Ouzzani, H. Hammady, Z. Fedorowicz, A. Elmagarmid, Rayyan—a
web and mobile app for systematic reviews, Systematic reviews 5 (1)
(2016) 210.

[27] A. M. Cohen, N. R. Smalheiser, et al., Automated confidence ranked
classification of randomized controlled trial articles: an aid to evidence-
based medicine, Journal of the American Medical Informatics Associa-
tion 22 (3) (2015) 707–717.

[28] B. C. Wallace, K. Small, C. E. Brodley, J. Lau, T. A. Trikalinos, Mod-
eling annotation time to reduce workload in comparative effectiveness
reviews, in: Proc. of the 1st ACM International Health Informatics Sym-
posium, 2010, pp. 28–35.

[29] B. C. Wallace, T. A. Trikalinos, J. Lau, C. Brodley, C. H. Schmid,
Semi-automated screening of biomedical citations for systematic re-
views, BMC bioinformatics 11 (1) (2010) 1–11.

38

[30] P. Przyby la, A. J. Brockmeier, G. Kontonatsios, et al., Prioritising ref-
erences for systematic reviews with robotanalyst: a user study, Research
synthesis methods 9 (3) (2018) 470–488.

[31] A. M. Cohen, W. R. Hersh, et al., Reducing workload in systematic
review preparation using automated citation classification, Journal of
the American Medical Informatics Association 13 (2) (2006) 206–219.

[32] C. R. Norman, M. M. Leeflang, R. Porcher, A. Neveol, Measuring the
impact of screening automation on meta-analyses of diagnostic test ac-
curacy, Systematic reviews 8 (1) (2019) 1–18.

[33] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. De Freitas, Taking
the human out of the loop: A review of bayesian optimization, Proceed-
ings of the IEEE 104 (1) (2015) 148–175.

[34] Y.-E. Liu, T. Mandel, E. Brunskill, Z. Popovic, Trading off scientific
knowledge and user learning with multi-armed bandits., in: EDM, 2014,
pp. 161–168.

[35] J. J. Williams, J. Kim, A. Rafferty, et al., Axis: Generating explanations
at scale with learnersourcing and machine learning, in: L@Scale, 2016,
pp. 379–388.

[36] A. Tabebordbar, A. Beheshti, B. Benatallah, et al., Feature-based and
adaptive rule adaptation in dynamic environments, DSE 5 (3) (2020)
207–223.

[37] T. V. Ribeiro, J. Massollar, G. H. Travassos, Challenges and pitfalls on
surveying evidence in the software engineering technical literature: an
exploratory study with novices, Empirical Software Engineering 23 (3)
(2018) 1594–1663.

[38] M.-A. Yaghoub-Zadeh-Fard, B. Benatallah, F. Casati, et al., Dynamic
word recommendation to obtain diverse crowdsourced paraphrases of
user utterances, in: Proc. of IUI, 2020, pp. 55–66.

[39] S. Kuzi, A. Shtok, O. Kurland, Query expansion using word embeddings,
in: Proc. of CIKM, 2016, pp. 1929–1932.

39

[40] S. Wang, H. Scells, B. Koopman, G. Zuccon, Can chatgpt write a good
boolean query for systematic review literature search?, arXiv preprint
arXiv:2302.03495 (2023).

[41] C. D. Manning, M. Surdeanu, et al., The stanford corenlp natural lan-
guage processing toolkit, in: Proc. of ACL, 2014, pp. 55–60.

[42] V. Garousi, M. Felderer, Experience-based guidelines for effective and
efficient data extraction in systematic reviews in software engineering,
in: Proc. of EASE’17, 2017, pp. 170–179.

[43] C. Carpineto, G. Romano, A survey of automatic query expansion in
information retrieval, Acm Computing Surveys (CSUR) 44 (1) (2012)
1–50.

[44] G. A. Miller, WordNet: An electronic lexical database, MIT press, 1998.

[45] T. Mikolov, I. Sutskever, K. Chen, et al., Distributed representations of
words and phrases and their compositionality, in: NeurIPS, 2013, pp.
3111–3119.

[46] S. Imtiaz, M. Bano, N. Ikram, et al., A tertiary study: experiences
of conducting systematic literature reviews in software engineering, in:
Proceedings of the 17th International Conference on Evaluation and
Assessment in Software Engineering, 2013, pp. 177–182.

[47] R. Kohavi, R. Longbotham, D. Sommerfield, et al., Controlled exper-
iments on the web: survey and practical guide, DMKD 18 (1) (2009)
140–181.

[48] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,
MIT, 2018.

[49] G. E. Lee, A. Sun, Seed-driven document ranking for systematic reviews
in evidence-based medicine, in: SIGIR, 2018, pp. 455–464.

[50] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for
word representation, in: Proc. of EMNLP, 2014, pp. 1532–1543.

[51] G. Salton, C. Buckley, Improving retrieval performance by relevance
feedback, Journal of the American society for information science 41 (4)
(1990) 288–297.

40

[52] V. Lavrenko, W. B. Croft, Relevance-based language models, in: ACM
SIGIR Forum, Vol. 51, ACM New York, NY, USA, 2017, pp. 260–267.

[53] D. Russo, B. Van Roy, A. Kazerouni, et al., A tutorial on thompson
sampling, arXiv preprint arXiv:1707.02038 (2017).

[54] S. Agrawal, N. Goyal, Analysis of thompson sampling for the multi-
armed bandit problem, in: Conference on learning theory, 2012, pp.
39–1.

[55] D. N. Hill, H. Nassif, Y. Liu, et al., An efficient bandit algorithm for
realtime multivariate optimization, in: KDD’17, 2017, pp. 1813–1821.

[56] J. Kawale, H. H. Bui, et al., Efficient thompson sampling for online
matrix-factorization recommendation, Advances in neural information
processing systems 28 (2015) 1297–1305.

[57] E. Brochu, V. M. Cora, et al., A tutorial on bayesian optimization of ex-
pensive cost functions, with application to active user modeling and hier-
archical reinforcement learning, arXiv preprint arXiv:1012.2599 (2010).

[58] R. Xiao, J. Ji, B. Cui, H. Tang, W. Ou, Y. Xiao, J. Tan, X. Ju, Weakly
supervised co-training of query rewriting andsemantic matching for e-
commerce, in: Proceedings of the Twelfth ACM International Confer-
ence on Web Search and Data Mining, 2019, pp. 402–410.

[59] C.-C. K. Chang, H. Garcia-Molina, A. Paepcke, Predicate rewriting for
translating boolean queries in a heterogeneous information system, ACM
Transactions on Information Systems (TOIS) 17 (1) (1999) 1–39.

[60] E. Even-Dar, S. Mannor, Y. Mansour, S. Mahadevan, Action elimination
and stopping conditions for the multi-armed bandit and reinforcement
learning problems., Journal of machine learning research 7 (6) (2006).

[61] A. Fathan, E. Delage, Deep reinforcement learning for optimal
stopping with application in financial engineering, arXiv preprint
arXiv:2105.08877 (2021).

[62] R. S. Wahono, A systematic literature review of software defect predic-
tion, Journal of Software Engineering 1 (1) (2015) 1–16.

41

[63] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic lit-
erature review on fault prediction performance in software engineering,
IEEE Transactions on Software Engineering 38 (6) (2011) 1276–1304.

[64] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, Software fault predic-
tion metrics: A systematic literature review, Information and software
technology 55 (8) (2013) 1397–1418.

[65] P. Jamshidi, A. Ahmad, C. Pahl, Cloud migration research: a systematic
review, IEEE transactions on cloud computing 1 (2) (2013) 142–157.

[66] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey,
S. Linkman, Systematic literature reviews in software engineering–a sys-
tematic literature review, Information and software technology 51 (1)
(2009) 7–15.

[67] A. Barǐsić, M. Goulão, V. Amaral, Domain-specific language domain
analysis and evaluation: a systematic literature review, Faculdade de
Ciencias e Technologia, Universidade Nova da Lisboa (2015).

[68] M. Frank, M. Hilbrich, S. Lehrig, S. Becker, Parallelization, modeling,
and performance prediction in the multi-/many core area: A systematic
literature review, in: 2017 IEEE 7th International Symposium on Cloud
and Service Computing (SC2), IEEE, 2017, pp. 48–55.

[69] G. Adamo, C. Ghidini, C. Di Francescomarino, What is a process model
composed of? a systematic literature review of meta-models in bpm,
arXiv preprint arXiv:2011.09177 (2020).

[70] C. Qin, H. Eichelberger, K. Schmid, Enactment of adaptation in data
stream processing with latency implications—a systematic literature re-
view, Information and Software Technology 111 (2019) 1–21.

[71] E. N. Teixeira, F. A. Aleixo, F. D. de Sousa Amâncio, E. OliveiraJr,
U. Kulesza, C. Werner, Software process line as an approach to support
software process reuse: A systematic literature review, Information and
Software Technology 116 (2019) 106175.

[72] V. Efstathiou, C. Chatzilenas, D. Spinellis, Word embeddings for the
software engineering domain, in: Proc. of the international Conf. on
mining software repositories, 2018, pp. 38–41.

42

[73] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781 (2013).

[74] M. C. Barukh, S. Zamanirad, M. Baez, A. Beheshti, B. Benatallah,
F. Casati, L. Yao, Q. Z. Sheng, F. Schiliro, Cognitive augmentation in
processes, in: Next-Generation Digital Services - Essays Dedicated to
Mike Papazoglou, Vol. 12, Springer, 2020.

[75] G. Kontonatsios, A. J. Brockmeier, P. Przyby la, J. McNaught, T. Mu,
J. Y. Goulermas, S. Ananiadou, A semi-supervised approach using label
propagation to support citation screening, Journal of biomedical infor-
matics 72 (2017) 67–76.

[76] G. Rizzo, F. Tomassetti, A. Vetro, L. Ardito, M. Torchiano, M. Morisio,
R. Troncy, Semantic enrichment for recommendation of primary studies
in a systematic literature review, Digital Scholarship in the Humanities
32 (1) (2017) 195–208.

[77] B. K. Olorisade, P. Brereton, P. Andras, The use of bibliography en-
riched features for automatic citation screening, Journal of biomedical
informatics 94 (2019) 103202.

[78] I. J. Marshall, A. Noel-Storr, J. Kuiper, J. Thomas, B. C. Wallace,
Machine learning for identifying randomized controlled trials: an evalu-
ation and practitioner’s guide, Research synthesis methods 9 (4) (2018)
602–614.

43

