
Universal Resource Lifecycle Management
Marcos Báez, Fabio Casati, Maurizio Marchese

#Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento
Via Sommarive, 14 38100 Trento (Italy)

1baez, casati, marchese@disi.unitn.it

Abstract— This paper presents a model and a tool that allows
Web users to define, execute, and manage lifecycles for any
artifact available on the Web. In the paper we show the need for
lifecycle management of Web artifacts, and we show in
particular why it is important that non-programmers are also
able to do this. We then discuss why current models do not allow
this, and we present a model and a system implementation that
achieves lifecycle management for any URI-identifiable and
accessible object. The most challenging parts of the work lie in
the definition of a simple but universal model and system (and in
particular in allowing universality and simplicity to coexist) and
in the ability to hide from the lifecycle modeler the complexity
intrinsic in having to access and manage a variety of resources,
which differ in nature, in the operations that are allowed on
them, and in the protocols and data formats required to access
them.

I. INTRODUCTION
This work introduces concepts, methods, and a system for

universal resource lifecycle management.
Nearly every artifact, from web pages, documents, wikis,

code, to non-software resources (houses in construction,
purchase orders, etc.) goes through a lifecycle. In a few cases,
the lifecycle of these artifacts is supported by a tool that
allows their modeling, automation, monitoring, and
management. This typically happens when the lifecycle is
formalized and strictly followed. For example, the process of
approving purchase orders and procuring the goods is, in some
large companies, supported by a workflow management
system. In these cases, a system can interpret a formal
definition of the lifecycle and execute/enforce it.

In the majority of cases however, the lifecycle is informally
defined, and is executed, monitored, and managed “by hand”,
if at all. This is because generic process management tools
are too complex and too rigid for this purpose, and are tightly
coupled with the artifact they manage. For example, consider
the execution of a software project, which includes the
development and delivery of documents and code. The code is
usually managed through a source control system, while the
documents can be developed collaboratively online via the
likes of Google Docs1 or Zoho2. For each type of artifact, the
team often defines a “quality plan” along with the lifecycle
that the artifacts should follow. For example, design
documents should be first reviewed and discussed by the
development team, then reviewed by and discussed with the
chief architect, and then signed off by the project manager. A

1 http://docs.google.com
2 http://www.zoho.com

unit manager, architect, or project manager, would like to
know at a glance which documents are in a given status,
which are late, and which have issues that need special
attention. A team member/developer, would like to visualize
the lifecycle of the documents he is in charge of, so that he
knows what he is supposed to do with the document, and to
automate the process of making it available to the team,
sending it for review, collecting the reviews, sending it to the
chief architect after revision, getting it signed off, and so on.

Today these types of lifecycles are modeled informally
(sometimes even verbally) and they are mainly executed by
hand typically by sending emails and editing access/visibility
rights. The status is typically tracked by updating a MS
project document or some spreadsheet.

Process and lifecycle management in these cases, using
tools such as workflow managers, is unfeasible. First, the team
would have to learn yet another tool, characterized by models
(e.g., workflow models) typically fairly complex and anyways,
despite marketing claims, targeted at programmers, not at
users such as project managers. Second, the majority of
everyday lifecycles are unstructured and flexible, and
traditional workflow systems are not good at this (we will
discuss this in detail in the related work section). Third, the
progression through the lifecycle is often controlled by a
human based on his /her judgment, not by an engine based on
pre-defined rules. It is the developer, team leader, or project
manager, who decides when the artifact can move to the next
step of the lifecycle and which is this next step. Fourth, the
decision of what to do at a given step in the lifecycle may
itself change over time rather than being predetermined. For
example, I may want to send the document to two rather than
three reviewers, and decide who the reviewers are on the fly,
or I may decide to post it and allow (i.e., set access rights so
that) all my team to enter review comments. Fifth, in real
projects typically there are a set of different kinds of artifacts
(code, web pages, documents, etc) managed with different
tools (CVSs, Web text editors, etc), distributed across the
organization and managed by different owners. Using
different lifecycle management tool for each of these would
be practically unthinkable.

This paper proposes an abstractions framework and a
supporting environment that overcome these limitations and
enable universal resource lifecycle management. We use the
terms “universal” and “resource” as we want the system to
manage whatever can be identified by an URI, regardless of
its nature, managing application, owner, or location. We
realize that such universality can often be at odds with ease of
use, and indeed this is one of the challenges we face and

address. The main characteristics of the proposed approach,
also corresponding to the main contributions of the paper, are
the following:
• The system is targeted at advanced web users (e.g., users

comfortable with writing on wikis), not only programmers.
The lifecycle model is very simple, essentially based on
state machines. There are no complex features such as path
conditions, transactions or exceptions.

• There is no need for modeling the resource being managed
and its properties. The resource can be a “black box” from
the lifecycle perspective. This is key both to universality
and to keep the model simple from the perspective of the
lifecycle designer who does not need to worry about the
specifics of each resource.

• We support automation of operations on the resources (e.g.,
changing access rights, submitting for reviews, etc.),
achieved by actions that can be associated to phases (states)
and executed upon entering a phase. Actions are where
both the complexity and the resource type-specific
behavior reside (e.g., sending a Google doc for review also
requires setting access rights, and the way this is done is
Google Docs-specific). They are written by programmers,
who populate a library of useful actions.

• The model is targeted at unstructured lifecycles, where
there is a high potential variability and the need to place
the human in the driver’s seat. For example, the lifecycle
owner can determine when the resource transitions to the
next phase or which is the next phase among the possible
ones.

• The lifecycle management tool is hosted and available as a
service, together with the lifecycle design interface and the
monitoring interface, i.e., the interface a project manager
would use to visualize status and history of the resources
under her responsibility.

In the following we describe both the model and the
prototypal system (named Gelee) in detail, together with the
reasoning behind the various choices. We do this by starting
from a concrete example (which is also the reason why we
started developing this system), and extracting and abstracting
requirements from it. Then, after discussing and comparing
with the state of the art, we detail the model, the Gelee system
architecture, implementation, and validation. We then discuss
possible extensions and how these can be applied.

II. MOTIVATING SCENARIO

A. EU Projects
At the heart of our interest in this problem was the

participation in several European Union (EU) projects and in
particular one in which we act as coordinators, called
LiquidPub3 . So, we use this as a case study. EU projects
involve people from different organizations working
collaboratively (a project consortium) to achieve a project
goal. EU projects are typically organized in work packages,
each including tasks, deliverables, and milestones. Each of

3 http://project.liquidpub.org

these has owners and collaborators (usually expressed as
consortium partners, not people), and deadlines. In this
motivating scenario we focus on deliverables. A project has a
number of deliverables ranging from 20 to 40 or more,
depending on the size. In Liquidpub we have 35.

EU project coordinators typically define “quality plans” for
deliverables, outlining essentially a desired lifecycle for them.
This adds to the rules (and hence parts of the lifecycle)
defined by the EU itself. For every deliverable there are one or
more responsible parties playing different roles, with different
levels of visibility or access rights. Moreover, each deliverable
has its own lifecycle, which is comprised of different steps
involving different activities and people.

For example, consider a typical scenario involving the
production of a “State of the Art” deliverable. In the early
phase of its elaboration, there is a small group of people
sharing a document (maybe using Google Docs or a Wiki) in
which they define the document structure and collaborate on
specific sections, providing access rights as needed. Then, at
some point (informally or formally defined as part of the
quality plan) the document is shared with a wider group of
people (specific reviewers, or the project team at large) to get
feedbacks. The iteration of the elaboration and review phases
continues until reviewers are satisfied. At this point the draft
is transformed in the appropriate format, sent to the funding
agency (EU in our case) for evaluation before a specified
deadline, and possibly published on the project web site
(either immediately or after EU approval). Very often, the
work on the document continues, for example to prepare a
survey paper for a journal.

The above represents an ideal scenario. Internal deadlines
can be missed, reviewers can be changed, phases can be
shortened or skipped to make it in time, different deliverables
can be merged into one or vice versa, etc.

B. Problem and Requirements Abstraction
From the above scenario we generalize requirements and

desiderata for two classes of people involved in the project:
project managers (who define the lifecycle, e.g., the project
coordinator in our example) and artifact owners (who are
responsible for driving the execution on an artifact, e.g., the
responsible of a deliverable).

If we take the perspective of project managers – people
responsible for managing a relatively large set of artifacts - we
would like to:
1. Define the lifecycle of the different artifacts (we use the

terms artifact and resource interchangeably). For
example, define the quality plan that describe what every
deliverable should go through. An example is given in
Fig. 1.

2. Associate the lifecycle to resources, possibly customizing
it as needed for the resource (some deliverable may
require specific treatment, for example our state of the art
deliverable that was developed by integrating pieces done
by the various project partners).

3. Avoid – as much as possible - the concerns of resource-
specific details. We don’t want to define different models

based on whether the deliverable is done with Google
Docs, or latex over Subversion.

4. Monitor lifecycles. We (as project managers) would like
to be able to have a picture of the status of the lifecycle
for each artifact at any given point in time, with particular
attention to delays.

5. Simplicity. The user is the average scientist doing
research, not a programmer. These kinds of users should
be able to define, execute, and monitor the lifecycles.

6. Flexibility and robustness. The web has taught us that
things that work well are not only those that are simple
but also those that are robust to failures or imprecision.
Ideally it should be possible for the lifecycle to be
partially specified and still be usable and useful for
managing the artifacts’ evolution.

If we take instead the perspective of the artifact owner, we
identify the following requirements:
1. The owner should be able to go through the lifecycle,

advancing from a phase to the next, and while doing so,
(automatically) initiating and executing the necessary
actions.

2. The execution should be independent of the specifics of
the resource. For all lifecycles, owners “simply” have to
decide when they are ready to progress to the next phase.

3. The abstraction and interfaces should be simple and
integrated with the tool managing the resource, to
simplify usage.

4. The owner should have the possibility to deviate from the
prescribed lifecycle. Changes (such as skipping a formal
internal review due to delays) are the norm and imposing
a fixed model would make the tool and abstractions
useless. Furthermore, some parts of the lifecycle may be
left to be decided by the owner or may have been
unknown/undecided at lifecycle definition time. This
means that the lifecycle for each object is only loosely
defined beforehand.

Today, resource lifecycles in contexts like project
executions are in the vast majority of cases managed by one
tool: Microsoft Project. The reason is simple: MS Project is
simple, intuitive, and imposes little or no unnecessary
overhead. The challenge that is laid out for us therefore is to
provide a way to facilitate the definition and execution of
lifecycles and the management of the various artifacts and
their progress while achieving to the possible extent a level of
simplicity, flexibility, and intuitiveness similar to that of MS
Project.

III. RELATED WORK

A. Workflow Management Systems
Workflow systems allow the definition, execution, and

management of workflows. In general, workflow systems
describe a business process as a set of tasks, to be executed in
the order defined by the model. They are related to our work
since they describe a flow model and actions to be executed

on objects. They are however different since i) they do not
focus on lifecycle management (they do not focus on the
evolution of an object, but rather they model arbitrary actions
to be executed by human or automated resources), ii) they are
fairly rigid and prescriptive (they work well for structured,
repeatable processes), iii) they are targeted to programmers
and often designed for mission-critical applications (in fact
they are not significantly less complex than Java for example),
and iv) the corresponding software platform is large and
complex to operate and maintain.

Interesting lessons can however be learned by looking both
at research in workflow evolution and adaptive workflow and
at research on semi-structured workflow models, including in
particular scientific workflows that are targeted at scientists.

In the area of adaptive workflows, several approaches have
been proposed to provide dynamic process management
[1][2][3], mostly focusing on managing migration of instances
when the corresponding model is changed. In this paper we
approach the problem by decoupling (or as we define later,
light-coupling) instances and models, and automated
migration is not required – also because the progression of the
flow is always done by humans.

A similar approach to the flexibility we offer in the
lifecycle management is provided by the PROSYT system [4].
PROSYT takes the artifact-based approach in which
operations and conditions for these operations can be defined
over the concept of artifact type. Nonetheless, each artifact
type defines just one possible lifecycle, and runtime lifecycle
model changes are not allowed. This coupling reduces
expressiveness and generality. In contrast, our approach
provides independence from the resource being managed
(universality), late binding of phases, actions, and resources,
and we focus on simplicity in the model and system due to the
nature of our target users.

With a different target, scientific workflows were
developed for scientific problem-solving environments, in
which experiments need to be conducted. Experiments can be
considered as sets of actions operating on data, constituting
possibly large data flows [5]. Due to the nature of the
environment, it is not often possible to anticipate a scientific
workflow, so model-changes and user intervention at runtime
are necessaries to provide flexibility. Other requirements like
reproducibility, detailed documenting and analysis are main
concerns. Aside the fact that we take the artifact-oriented
approach while this approach relies on a workflow, one main
difference is that our model can be also descriptive. In other
words, we consider important the monitoring also from the
point of view of reflecting a step in the process, even if it does
not involve a processing.

B. Document Management
The approach introduced in this work has roots also in the

document engineering community. In this area, models and
tools are developed around the concept of documents, which
are particular types of resources.

In [6] the notion of document-centered collaboration is
introduced. There, the activities of collaboration and
coordination are considered aspects of the artifact rather than

workflows. For this, they attach computation to documents
(i.e. a word processor), whose actions define the workflow.
However, this approach is focused in decoupling documents
from workflows rather than providing a workflow modeling
approach. In essence, this idea of separating the artifact from
the workflow is aligned with our idea of decoupling artifacts
from lifecycles, but we also build a flexible, reusable and
simple lifecycle management model on top.

Flexibility is also important in this area. A framework for
document-driven workflows was proposed in [7], which
requires no explicit control flow. In this approach, the
boundary of the flexibility is described by the dependency
among documents, that is, one document being input of
another. Nevertheless, as workflow operations are associated
to changes in the documents, these changes must be done
under the control of the workflow. In our approach, the
lifecycle operations are associated to transitions, not to
changes in the document. Thus, artifact processing (i.e.,
editing a Google Doc document) is freed from the model.

In [8], the processing of artifacts, from the creation to
completion and archiving, is captured by lifecycles.
Nonetheless, the flexibility offered is more focused on the
artifact representation rather than lifecycle evolution and
execution. Differing from this, our model provides flexibility
in the lifecycle modeling and execution, and decoupling
among lifecycle models and instances.

C. Lifecycle Modeling Notations
At present, there are a variety of models, notations, and

languages for describing lifecycles. The most popular class of
models is UML, and within UML the most common approach
is to model lifecycles using state machines, that have exactly
the purpose of modeling the state and evolution of an object,
and the events that cause state transition [9]. State machines
have been extended in a variety of ways, e.g., by allowing
guards to be placed on transitions, to associate actions to
transitions (statecharts [9]), and the like.

We essentially reuse finite state machines as the base for
the lifecycle model we propose. The contributions of Gelee
are not so much in the basic model, but rather in the
instantiation and execution model, in the light-binding
(described next) between models and instances and in how we
cope with the heterogeneity of the possible resources to be
managed and correspondingly with the different kinds of
actions they support.

Other notations have been used to model lifecycles and
processes. The most common ones are Petri nets and activity
diagrams and their variations and extensions (which include
also workflows and service composition notations such as
BPMN [10]). We did not base our implementation on these
notations as we find them more appropriate for describing
workflows and procedures (generic sets of actions to be
executed according to some ordering constraints) more than
lifecycles (evolution of the state through which a resource
goes through, and allowed actions in each state). In any case
the essence of the differences of Gelee would still lie in the
aspects mentioned above, not so much in the base notation.

IV. CONCEPTS, MODELS, AND LANGUAGES
In the following we first describe the lifecycle model at a

high level, then discuss its execution semantics in terms of
overall lifecycle executions and action executions.

A. Lifecycle model: basics
In essence, a resource lifecycle is a set of phases and phase

transitions, similar to state machines and state charts. The
phase describes the stage in life in which the resource is, while
transitions denote possible evolutions. At any given moment,
a resource is in one and only one phase. Fig. 1 illustrates all
the elements of the lifecycle with our example of Section 1.

At the lifecycle level, all the model needs to know of the
resource is its URI and its type, a string whose main purpose
is to denote which is the managing application. For example,
resource types can be Wiki page, Google doc, Zoho project,
SVN repository, etc. If the resource is password-protected, the
model will also need login information. No other information
is needed for the lifecycle to be able to manage the resource.

Phases can have associated actions. Actions are operations
that are executed on the resource as the phase is entered.
Examples of actions are: changing access rights, notifying
reviewers, etc (see Fig. 1). Actions have parameters which are
typically instantiated as a lifecycle begins. For example,
“notify reviewers” could have as parameter the “reviewers
list”, which is an information we could have or not beforehand.

Fig. 1–EU Project deliverable lifecycle

At the lifecycle model, neither the lifecycle composer (the
one designing the lifecycle) nor the resource lifecycle owner
(the person(s) in charge of advancing the lifecycle on a
specific resource) needs to be concerned with how they are
implemented. All actions associated to a phase are executed in
parallel and anyway in a non-deterministic order. Any
sequencing must be imposed either by splitting the phases.
Actions are not guaranteed to succeed and there is no
transactional semantic imposed by the model (nothing
prevents the action itself, inside its implementation, of having
a transactional behavior). The expected behavior is that when
the actions complete, the lifecycle owner advances the
lifecycle to the next phase (details on how this occurs are
provided below).

When designing a lifecycle model, lifecycle composers can
select the actions from a library (written by programmers).

Internal Review

+ Change access rights
+ Notify reviewers

Final Assembly

+ Generate PDF
+ Change access rights

EU Review

+ Change access rights
+ Notify reviewers

Publication

+ Post on web site
+ Change access rights

Elaboration

+ label

Terminal nodes Phase Action Transition

Notation

The actions they select will determine the resource types to
which the lifecycle can be applied. Thus, models referring to
resource-specific actions will have more limited applicability.

Executing actions, however, is not the only purpose for
having phases in a model. It is perfectly reasonable (and
indeed useful) to have “empty” phases considering that one of
the main purposes of lifecycles is also monitoring. For
example, if the “Elaboration” phase in Fig. 1 involves editing
a document in Google Docs we may still want to show that the
current phase is “Elaboration”, even if there is no action
executed from the lifecycle.

Finally, the model includes several other features not
discussed in detail here, such as deadlines and time constraints
as well as annotations. Annotations are in particular used to
explain why a lifecycle owner does not follow the standard
flow, as discussed below.

B. Lifecycle Execution
A lifecycle instance is a particular execution of a lifecycle

on a given resource. When the lifecycle instance begins, the
lifecycle is associated to a specific resource and actions can be
configured if necessary. The lifecycle remains active until an
end phase is reached. End phases are phases with no
associated actions, and their purpose is only to denote that the
lifecycle instance is complete in a certain final state.

In Gelee there is no analogous of a workflow engine. The
engine is the human, who executes the lifecycle instances (i.e.,
moves the tokens from phase to phase) and, while doing so,
initiates the execution of actions.

Another important aspect is that the model is descriptive
rather than prescriptive. Its purpose is to describe a desired
lifecycle (and the associated actions), not to impose it. In fact,
the lifecycle owner can at any time move the token to any
phase. One can argue that the model could include mandatory
transitions or actions, but this is one of the many instances
where we had to veto our desire to add features for the sake of
keeping the model as lightweight as possible for lifecycle
owners and designers.

Finally, owners can change the lifecycle followed by a
resource, in other words they can change the model associated
to a lifecycle instance.

The above denotes a light-coupling4 between models and
instances. Owners can change the life of a resource without
changing the model, and designers can change the model
without affecting running instances if they so desire. If
designers change a lifecycle model, they can request to
propagate the change to running lifecycles. Upon receiving
the request, lifecycle owners can accept or reject the change,
and if they accept, they can state in which phase the lifecycle
instance should end up in the modified model. Therefore, even
in the presence of change, the problem of instance migrations
is here reduced to state migration. In terms of the lifecycle
definition, the light-coupling between model and instance

4 We use the term light-coupling instead of loose coupling to emphasize the

difference with respect to the traditional usage of the loose coupling term in
the web service context, which refer to the client not being hardcoded to
interact with a specific service.

means that the XML that describes the lifecycle definition is
self-contained.

A similar light-coupling exists between lifecycles and
resources: nothing prevents several lifecycle to be defined on
the same URI, and nothing prevents several lifecycle instances
on the same URI to be running.

Taking our example of Fig. 1, in Table I we give an
example of a lifecycle model definition using XML. This
specification makes clear how the different components
mentioned before are related.

TABLE I
EXAMPLE OF A XML DEFINITION OF THE LIFECYCLE

<process uri=””>
<name>EU Project deliverable lifecycle</name>
<!—Information about the version-->
<version_info>
 <version_number>1.0</version_number>
 <created_by>lpAdmin</created_by>
 <creation_date>08/07/2008</creation_date>
</version_info>
<!—List of suggested resource_types-->
<resource>
 <resource_type>MediaWiki page</resource_type>
</resource>
<!—Definition of the phases-->
<phases_list>
 <phase id=”elaboration”>
 <name>Elaboration</name>
 </phase>
 <phase id=”internalreview”>
 <name>Internal review</name>
 <!—Actions to be executed -->
 <action_call>
 <action>
 <name>Change access rights</name>
 <uri>http://www.liquidpub.org/a/chr</uri>
 <parameters>
 <!—Parameters to be specified at design-->
 <param id=”paramID”> value </param>
 </parameters>
 </action>
 ...
 </action_call>
 </phase>
 <phase id=”finalassembly”>
 <name>Final assembly</name>
 ...
 </phase>
 ...
</phases_list>
<!—The list of suggested transitions-->
<transition_list>
 <transition>
 <from> BEGIN </from><to>elaboration</to>
 </transition>
 ...
</transition_list>
</process>

C. Actions
Entering a phase triggers the execution of the associated

actions. The same compromise between definition and
runtime flexibility that exists in the lifecycle model is
provided to actions. The actions’ parameter can be fixed at
definition time, instantiated at lifecycle instantiation time, or
as the corresponding phase is entered. At execution time, the
action is invoked by calling an URI that identifies a web

service (either REST or SOAP), passing as parameters a link
to the object and a callback URI.

Upon completion, or periodically during execution, the
action can then call the callback URI and update on its status.
The status messages are arbitrary except two defined by the
model, corresponding to failure and successful completion.
The status messages have only information purposes. Their
interpretation or follow-up actions are left to the owner.

The attentive reader will have noticed that there is no
analogous of workflow data, neither following the blackboard
approach nor the data flow approach [11]. The owner inserts
all parameters “by hand”. Any additional desired behavior
must be part of the action implementation (as we discuss in
the following).

Actions are associated to resource types, and represent
operations that can be applied over the resource (also
depending on what the native resource management
application allows). For example, Google Docs service
provides a REST API that allows us to perform operations
over instances of the spreadsheet type. Some of these actions
are important for the point of view of the model, such as the
ones that allow us to i) perform CRUD operations, ii) define
access rights, and iii) subscribe to changes.

Notice that in this way the actions hide the specificities of
each resource type. Indeed, it is also possible to define the
same lifecycle and the same actions on resources at different
types (e.g. Google Docs and Zoho for documents, Picasa and
Flickr for photo albums, and control version systems such as
CVS or SVN). This is done by mapping the same action name
to different action implementations based on the resource
types. Details will be provided in the next section.

We mention here, that the proposed approach could have
many interesting uses looking at the growing number of
hosted services that provide access to heterogeneous artifacts.
Thus, the possibility of handling external resource makes this
approach an attractive base for integrating such objects with
user-defined processes.

D. Roles and Access Rights
During the lifecycle modeling and evolution, people are

playing different roles. These roles define the set of operations
users can perform over the lifecycle. In particular there are
main roles: the lifecycle manager, the lifecycle instance owner
and the token owner. The lifecycle manager is the person in
charge of administrating a lifecycle, and thus, this role allows
the user to design and modify the lifecycle. The lifecycle
instance owner, however, is assigned to the person who
instantiates the lifecycle on the resource. This role allows the
user to drive and modify the lifecycle instance. Finally, the
token owner role belongs to the user in charge of performing a
transition at a given phase. Unlike the instance owner, its
responsibilities are limited to follow the allowed transitions,
and typically to specific transitions only.

From the point of view of the resource we have also the
resource owner, as the person who has full access rights over
a given resource, and who can assign permissions for it.

Thus, instance and resource owners can assign permissions
or visibility rules over the instance and resources respectively.

Nonetheless, access rules over the resource are performed by
the platform that provides the resource, while lifecycle-related
permissions are supported by the model.

V. GELEE AT WORK
This section describes the basic elements that allow the

prototypal Gelee system to support lifecycle management. We
first define the overall architecture, and then discuss two
among the most important aspects: action-resource interaction
and lifecycle widgets. Although they are “embedded” in the
architecture section we draw the reader’s attention to it as they
correspond to key decisions in terms of keeping the model
simple, and in terms of usability and reusability.

A. Overall Architecture
The Gelee architecture is simple, especially due to the fact

that there is no analogous of a workflow engine that
progresses the flow from step to step. In essence, the system
supports design and monitoring as well as invocation of
actions that, from the core system perspective, are black boxes
and are embedded into resource type-specific plug-ins that can
be added as needed. As the primary goal of Gelee is to
manage online resources and to have a system that is simple
and usable, it was natural to provide lifecycle management as
a service, and therefore hosted. Fig. 2 depicts the high-level
architecture, composed essentially of three layers: the data tier,
the kernel and the user interface.

Fig. 2 - Gelee high-level architecture

At the bottom of the figure we have the data tier, which
includes the repositories for users and roles, resources and
actions definitions, templates, as well as execution logs
(including model evolution). The lifecycle manager is the
hearth of the system, and it has a design time and a runtime
module. The design time interacts with a lifecycle designer
GUI (discussed next) via a SOAP and REST interface and
receives definitions and modifications to a lifecycles. The
runtime module receives lifecycle instance events
(progression from phase to phase as dictated by the instance
owner), sent by the lifecycle execution widgets, and action
execution results, sent by resource plug-ins and discussed next.
The interaction also in this case occurs via SOAP or REST
messages. As a consequence of instance progression events,
the lifecycle manager looks up the action list for the new
phase reached by the lifecycle and contacts the resource type-
specific plug-in to execute them.

Monitoring
cockpit

 Resource manager Lifecycle Manager

SO
A

P
/R

E
ST

Zoho, Gdocs,
MediaWiki…

widgets

widgets

SOAP/REST

 Lifecycle
templates

User and roles Execution log Resource and
action definition

SO
A

P
/R

E
ST

Lifecycle
designer

widgets

Design time Run time

Lifecycle execution
widgets

B. Resources and Actions
Different resources are in general managed by different

applications (Wiki, Flickr, etc..). In many cases, although the
managing application is different, the kinds of actions that can
be executed on the resource are similar. For example, in both
Wiki and Google-Docs I can have the possibility of changing
the access rights, or sending it for review, or generating a PDF.
Some of these actions are semantically equivalent but may
require different parameters (i.e., the “signature” details are
different). The implementation instead is certainly different
and depends on the managing application.

This separation between action types and action
implementations is another way in which Gelee supports light-
coupling. Designers can define lifecycles (including definition
of actions) that can be made applicable to different resource
types. When a lifecycle is instantiated on a specific URI (and
therefore on a specific resource of a specific type), actions
types are resolved to specific action signatures and
implementations.

The interfacing between the Gelee platform and a specific
resource occurs through plug-ins or adapters. Developers can
create adapters for any kind of resource, and implement
actions that support a given functionality. The action
implementation may correspond to an existing action type
defined earlier for other resource types (e.g., send for review)
or it can be a new action type that does not exist in Gelee. In
both cases, the adapter needs to register the new action
implementation with Gelee, to make Gelee aware that there is
an action implementation for a specific resource type has been
added, or that a completely new action type is introduced. The
registration also includes information that Gelee needs for
invoking the action.

The action definition is standard and includes information
about i) the action type, which defines how to access the
action; ii) parameters, and the time at which their values have
to be associated; and iii) general metadata. This definition
allows Gelee platform to handle all actions in a standardized
fashion. Table II shows the XML of an action definition.

TABLE II
EXAMPLE OF AN ACTION TYPE DEFINITION XML

<action_type uri=”http://www.liquidpub.org/a/chr”>
 <name>Change Access Rights</name>
 <!—Information about the version-->
 <version_info>
 <version_number>1.0</version_number>
 <created_by>lpAdmin</created_by>
 <creation_date>08/07/2008</creation_date>
 </version_info>
<!—Action parameters -->
<parameters>
 <param bindingTime=”[def|inst|call|any]”
 required=”[yes|no]”>
 <name></name>
 <value></value>
 </param>
</parameters>
</action_type>

Once defined, actions are available for use in lifecycle
definition. When defining lifecycles, users can browse
through all actions as there is not yet, in general, a binding to

a resource type (unless the user restricts a lifecycle to a type or
a set of types). For modifications at runtime, only actions for
which there is an implementation for the resource being
managed are shown. An example is shown in Fig. 3.

Fig. 3 - Gelee lifecycle designer

C. Lifecycle Widgets
Gelee offers UI-level integration through resource type-

specific widgets and web interfaces. Web UI are provided for
the lifecycle designers (Fig. 3) and for the monitors. Both
offer an AJAX-style interface, easy and immediate to use.

Execution of lifecycles is instead different, as ideally it is
integrated with the resource, for example, it is shown in the
same web page, or as a browser plug-in. For this aspect we
use widgets. Widgets are components ready to be integrated
with web applications or even desktops. Through widgets,
users see the lifecycle and the resource they manage side by
side, as shown in Fig. 4.

Fig. 4. Integrated Resource Lifecycle Management widget

The integration between lifecycle management and the
resource, as shown in the above figure, is done by combining
execution features provided by the lifecycle manager interface,
and resource-specific information provided by the resource
manager. The latter offers the interface by which we can
render any resource in a transparent way.

Widgets are also subject to visibility attributes. Attributes
like access rules are automatically auto-discovered from the
lifecycle definition. Thus, a user interacting with a widget
could be requested for authentication or not based on the
visibility attributes, and also, different users could have
different views of the same lifecycle (i.e., managers, resource
owners, and stakeholders in general).

Users may have more specific needs beyond the services
we provide through our widgets. Therefore, we allow them
extending from the API to develop their own widgets or web
components (e.g. a facebook application). Moreover, because
of the added value of composing the services from different
source, we prepared our widgets to put in pipes (e.g. Yahoo
Pipes). For example, users could feed our widgets with
Google Docs feeds listing documents, and use that list to
reflect the lifecycle of those documents.

VI. CONCLUSION AND FUTURE WORK
In this paper we have described a universal resource

lifecycle management model and the Gelee prototypal system5.
The current status of the framework is that components have
been implemented (but not integrated) except the monitoring
interface that has been only designed. Hence the source is
available but the integrated platform is not yet available.
Resource plug-ins currently include Google Docs and
MediaWiki.

We tried to design the Gelee platform based on a very
concrete case (i.e. European Projects) and based on what we
and the people in the projects would like and would feel
comfortable. In this kind of design and developments, we
have the unique advantage that we ourselves (“we” writing the
paper, “we” members of the project, but also “we” as
researchers in general) are the users of the work and therefore
it is easier to define users’ requirements users are comfortable
with, especially in terms of resisting the temptation to make
the approach feature-rich but then inflexible or complex. In
this sense, the hardest parts of the work were in identifying the
level of complexity of the model and the light-binding
approach. The philosophy behind the design choice is to seek
simplicity whenever we can and tackle complexity only if and
when needed. Users who need simple things need not be
bothered with complexity.

Other innovative aspects of our framework are (1) the
action-resource model, which we believe provides a useful
abstraction from the composition perspective; (2) extensibility
and breadth of resource access and functionality. This is a
significant departure for example from workflow models or
even from service composition models.

The approach we have followed here is to put the
complexity in the implementation of the actions, while
keeping the model both general and simple, from the action
perspective, to the composition designer. Indeed the lifecycle
model can be described in about a page and learned in a
matter of minutes, literally. And it can be used to control any

5 Gelee is available for free and is developed in open source at

https://dev.liquidpub.org/svn/holms/trunk/.

resource for which there is a plug-in.
The approach is also kept clean and extensible by

leveraging plug-ins for resources, which can be externally
managed and for which we only need a URI of the manager
and an action interface for which we define the format, and
that is very extensible.

In terms of future work, besides completing the monitoring
aspect, interesting aspects include the integration with engines
for those cases where engines are actually needed, and the
challenge here lies in doing so keeping the same level of
simplicity and flexibility. Another aspect we think it is
interesting to explore is to link the lifecycle to complex
resource types, and specifically to composed resources. This is
a need we also have in the project, as sometimes the artifact
(which in Liquidpub are called scientific knowledge objects)
are structured, for example the state of the art is composed of
the main documents, the references, presentations, etc… and
managing a complex resource with components and with
potentially independent but somehow interacting lifecycles is
something that is part of our future explorations.

ACKNOWLEDGMENT
This work has been supported by the EU ICT project

LiquidPublication. The LIQUIDPUB project acknowledges
the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh
Framework Programme for Research of the European
Commission, under FET-Open grant number: 213360.

REFERENCES
[1] M. Reichert and P. Dadam. “ADEPTflex: Supporting Dynamic

Changes of Workflow without Loosing Control”. Journal of Intelligent
Information Systems, 10(2):93–129, 1998.

[2] Peter Dadam, Manfred Reichert, Stefanie Rinderle, Martin Jurisch,
Hilmar Acker, Kevin Göser, Ulrich Kreher, Markus Lauer: “Towards
Truly Flexible and Adaptive Process-Aware Information Systems”.
UNISCON 2008: 72-83.

[3] W.M.P. van der Aalst, Mathias Weske, and Dolf Grünbauer. “Case
handling: A newparadigm for business process support”, Data &
Knowledge Engineering, 53(2):129-162, 2005.

[4] Cugola, G. 1998b. Tolerating deviations in process support systems via
flexible enactment of process models. IEEE Transactions of Software
Engineering , 24, (11), November.

[5] M. Weske, G. Vossen, C.B. Medeiros. Scientific Workflow Management:
WASA Architecture and Applications. Fachbericht Angewandte
Mathematik und Informatik 03/96-1, Universitat Muster, 1996.

[6] LaMarca, A., Edwards, K., Dourish, P., Lamping, J., Smith, I., and
Thornton, J. 1999. Taking the work out of workflow: Mechanisms for
document-centric collaboration. In Proceedings of the 6th European
Conference on Computer-Supported Cooperative Work (ECSCW ’99,
Copenhagen, Denmark, Sept. 12–16), Kluwer Academic, Dordrecht,
Netherlands.

[7] J. Wang and A. Kumar. “A framework for document-driven workflow
systems”, In Business Process Management, pages 285–301, 2005.

[8] A. Nigam and N. S. Caswell, “Business Artifacts: An Approach to
Operational Specification,” IBM Systems Journal 42, No. 3, 428–445,
2003.

[9] D. Wodtke and G. Weikum, “A Formal Foundation for Distributed
Workflow Execution Based on State Charts”. Proc. Int'l Conf. on
Database Theory, Delphi, Greece, January 1997.

[10] Van der Aalst, W. M. P., ter Hofstede, A. H. M., Weske: Business
Process Management: A Survey. Business Process Management 2003.

[11] Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2003). Web services.
Springer.

