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Abstract— This paper presents a model and a tool that allows 
Web users to define, execute, and manage lifecycles for any 
artifact available on the Web. In the paper we show the need for 
lifecycle management of Web artifacts, and we show in 
particular why it is important that non-programmers are also 
able to do this. We then discuss why current models do not allow 
this, and we present a model and a system implementation that 
achieves lifecycle management for any URI-identifiable and 
accessible object. The most challenging parts of the work lie in 
the definition of a simple but universal model and system (and in 
particular in allowing universality and simplicity to coexist) and 
in the ability to hide from the lifecycle modeler the complexity 
intrinsic in having to access and manage a variety of resources, 
which differ in nature, in the operations that are allowed on 
them, and in the protocols and data formats required to access 
them. 

I. INTRODUCTION 
This work introduces concepts, methods, and a system for 

universal resource lifecycle management.  
Nearly every artifact, from web pages, documents, wikis, 

code, to non-software resources (houses in construction, 
purchase orders, etc.) goes through a lifecycle. In a few cases, 
the lifecycle of these artifacts is supported by a tool that 
allows their modeling, automation, monitoring, and 
management. This typically happens when the lifecycle is 
formalized and strictly followed. For example, the process of 
approving purchase orders and procuring the goods is, in some 
large companies, supported by a workflow management 
system. In these cases, a system can interpret a formal 
definition of the lifecycle and execute/enforce it.  

In the majority of cases however, the lifecycle is informally 
defined, and is executed, monitored, and managed “by hand”, 
if at all.  This is because generic process management tools 
are too complex and too rigid for this purpose, and are tightly 
coupled with the artifact they manage. For example, consider 
the execution of a software project, which includes the 
development and delivery of documents and code. The code is 
usually managed through a source control system, while the 
documents can be developed collaboratively online via the 
likes of Google Docs1 or Zoho2. For each type of artifact, the 
team often defines a “quality plan” along with the lifecycle 
that the artifacts should follow. For example, design 
documents should be first reviewed and discussed by the 
development team, then reviewed by and discussed with the 
chief architect, and then signed off by the project manager. A 

                                                 
1 http://docs.google.com 
2 http://www.zoho.com 

unit manager, architect, or project manager, would like to 
know at a glance which documents are in a given status, 
which are late, and which have issues that need special 
attention. A team member/developer, would like to visualize 
the lifecycle of the documents he is in charge of, so that he 
knows what he is supposed to do with the document, and to 
automate the process of making it available to the team, 
sending it for review, collecting the reviews, sending it to the 
chief architect after revision, getting it signed off, and so on.  

Today these types of lifecycles are modeled informally 
(sometimes even verbally) and they are mainly executed by 
hand typically by sending emails and editing access/visibility 
rights. The status is typically tracked by updating a MS 
project document or some spreadsheet.  

Process and lifecycle management in these cases, using 
tools such as workflow managers, is unfeasible. First, the team 
would have to learn yet another tool, characterized by models 
(e.g., workflow models) typically fairly complex and anyways, 
despite marketing claims, targeted at programmers, not at 
users such as project managers. Second, the majority of 
everyday lifecycles are unstructured and flexible, and 
traditional workflow systems are not good at this (we will 
discuss this in detail in the related work section). Third, the 
progression through the lifecycle is often controlled by a 
human based on his /her judgment, not by an engine based on 
pre-defined rules. It is the developer, team leader, or project 
manager, who decides when the artifact can move to the next 
step of the lifecycle and which is this next step. Fourth, the 
decision of what to do at a given step in the lifecycle may 
itself change over time rather than being predetermined. For 
example, I may want to send the document to two rather than 
three reviewers, and decide who the reviewers are on the fly, 
or I may decide to post it and allow (i.e., set access rights so 
that) all my team to enter review comments. Fifth, in real 
projects typically there are a set of different kinds of artifacts 
(code, web pages, documents, etc) managed with different 
tools (CVSs, Web text editors, etc), distributed across the 
organization and managed by different owners. Using 
different lifecycle management tool for each of these would 
be practically unthinkable. 

This paper proposes an abstractions framework and a 
supporting environment that overcome these limitations and 
enable universal resource lifecycle management. We use the 
terms “universal” and “resource” as we want the system to 
manage whatever can be identified by an URI, regardless of 
its nature, managing application, owner, or location. We 
realize that such universality can often be at odds with ease of 
use, and indeed this is one of the challenges we face and 



address. The main characteristics of the proposed approach, 
also corresponding to the main contributions of the paper, are 
the following: 
• The system is targeted at advanced web users (e.g., users 

comfortable with writing on wikis), not only programmers.  
The lifecycle model is very simple, essentially based on 
state machines. There are no complex features such as path 
conditions, transactions or exceptions.  

• There is no need for modeling the resource being managed 
and its properties. The resource can be a “black box” from 
the lifecycle perspective. This is key both to universality 
and to keep the model simple from the perspective of the 
lifecycle designer who does not need to worry about the 
specifics of each resource. 

• We support automation of operations on the resources (e.g., 
changing access rights, submitting for reviews, etc.), 
achieved by actions that can be associated to phases (states) 
and executed upon entering a phase. Actions are where 
both the complexity and the resource type-specific 
behavior reside (e.g., sending a Google doc for review also 
requires setting access rights, and the way this is done is 
Google Docs-specific). They are written by programmers, 
who populate a library of useful actions.  

• The model is targeted at unstructured lifecycles, where 
there is a high potential variability and the need to place 
the human in the driver’s seat. For example, the lifecycle 
owner can determine when the resource transitions to the 
next phase or which is the next phase among the possible 
ones. 

• The lifecycle management tool is hosted and available as a 
service, together with the lifecycle design interface and the 
monitoring interface, i.e., the interface a project manager 
would use to visualize status and history of the resources 
under her responsibility.  

In the following we describe both the model and the 
prototypal system (named Gelee) in detail, together with the 
reasoning behind the various choices. We do this by starting 
from a concrete example (which is also the reason why we 
started developing this system), and extracting and abstracting 
requirements from it. Then, after discussing and comparing 
with the state of the art, we detail the model, the Gelee system 
architecture, implementation, and validation. We then discuss 
possible extensions and how these can be applied. 

II. MOTIVATING SCENARIO 

A. EU Projects 
At the heart of our interest in this problem was the 

participation in several European Union (EU) projects and in 
particular one in which we act as coordinators, called 
LiquidPub3 . So, we use this as a case study. EU projects 
involve people from different organizations working 
collaboratively (a project consortium) to achieve a project 
goal. EU projects are typically organized in work packages, 
each including tasks, deliverables, and milestones. Each of 
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these has owners and collaborators (usually expressed as 
consortium partners, not people), and deadlines. In this 
motivating scenario we focus on deliverables. A project has a 
number of deliverables ranging from 20 to 40 or more, 
depending on the size. In Liquidpub we have 35.  

EU project coordinators typically define “quality plans” for 
deliverables, outlining essentially a desired lifecycle for them. 
This adds to the rules (and hence parts of the lifecycle) 
defined by the EU itself. For every deliverable there are one or 
more responsible parties playing different roles, with different 
levels of visibility or access rights. Moreover, each deliverable 
has its own lifecycle, which is comprised of different steps 
involving different activities and people. 

For example, consider a typical scenario involving the 
production of a “State of the Art” deliverable. In the early 
phase of its elaboration, there is a small group of people 
sharing a document (maybe using Google Docs or a Wiki) in 
which they define the document structure and collaborate on 
specific sections, providing access rights as needed. Then, at 
some point (informally or formally defined as part of the 
quality plan) the document is shared with a wider group of 
people (specific reviewers, or the project team at large) to get 
feedbacks. The iteration of the elaboration and review phases 
continues until reviewers are satisfied. At this point the draft 
is transformed in the appropriate format, sent to the funding 
agency (EU in our case) for evaluation before a specified 
deadline, and possibly published on the project web site 
(either immediately or after EU approval). Very often, the 
work on the document continues, for example to prepare a 
survey paper for a journal. 

The above represents an ideal scenario. Internal deadlines 
can be missed, reviewers can be changed, phases can be 
shortened or skipped to make it in time, different deliverables 
can be merged into one or vice versa, etc. 

B. Problem and Requirements Abstraction 
From the above scenario we generalize requirements and 

desiderata for two classes of people involved in the project: 
project managers (who define the lifecycle, e.g., the project 
coordinator in our example) and artifact owners (who are 
responsible for driving the execution on an artifact, e.g., the 
responsible of a deliverable).  

If we take the perspective of project managers – people 
responsible for managing a relatively large set of artifacts - we 
would like to:  
1. Define the lifecycle of the different artifacts (we use the 

terms artifact and resource interchangeably). For 
example, define the quality plan that describe what every 
deliverable should go through. An example is given in 
Fig. 1. 

2. Associate the lifecycle to resources, possibly customizing 
it as needed for the resource (some deliverable may 
require specific treatment, for example our state of the art 
deliverable that was developed by integrating pieces done 
by the various project partners). 

3. Avoid – as much as possible - the concerns of resource-
specific details. We don’t want to define different models 



based on whether the deliverable is done with Google 
Docs, or latex over Subversion.  

4. Monitor lifecycles. We (as project managers) would like 
to be able to have a picture of the status of the lifecycle 
for each artifact at any given point in time, with particular 
attention to delays. 

5. Simplicity. The user is the average scientist doing 
research, not a programmer. These kinds of users should 
be able to define, execute, and monitor the lifecycles. 

6. Flexibility and robustness. The web has taught us that 
things that work well are not only those that are simple 
but also those that are robust to failures or imprecision. 
Ideally it should be possible for the lifecycle to be 
partially specified and still be usable and useful for 
managing the artifacts’ evolution. 

If we take instead the perspective of the artifact owner, we 
identify the following requirements: 
1. The owner should be able to go through the lifecycle, 

advancing from a phase to the next, and while doing so, 
(automatically) initiating and executing the necessary 
actions.  

2. The execution should be independent of the specifics of 
the resource. For all lifecycles, owners “simply” have to 
decide when they are ready to progress to the next phase. 

3. The abstraction and interfaces should be simple and 
integrated with the tool managing the resource, to 
simplify usage.  

4. The owner should have the possibility to deviate from the 
prescribed lifecycle. Changes (such as skipping a formal 
internal review due to delays) are the norm and imposing 
a fixed model would make the tool and abstractions 
useless. Furthermore, some parts of the lifecycle may be 
left to be decided by the owner or may have been 
unknown/undecided at lifecycle definition time. This 
means that the lifecycle for each object is only loosely 
defined beforehand.  

Today, resource lifecycles in contexts like project 
executions are in the vast majority of cases managed by one 
tool: Microsoft Project. The reason is simple: MS Project is 
simple, intuitive, and imposes little or no unnecessary 
overhead. The challenge that is laid out for us therefore is to 
provide a way to facilitate the definition and execution of 
lifecycles and the management of the various artifacts and 
their progress while achieving to the possible extent a level of 
simplicity, flexibility, and intuitiveness similar to that of MS 
Project. 

III. RELATED WORK 

A. Workflow Management Systems 
Workflow systems allow the definition, execution, and 

management of workflows. In general, workflow systems 
describe a business process as a set of tasks, to be executed in 
the order defined by the model. They are related to our work 
since they describe a flow model and actions to be executed 

on objects. They are however different since i) they do not 
focus on lifecycle management (they do not focus on the 
evolution of an object, but rather they model arbitrary actions 
to be executed by human or automated resources), ii) they are 
fairly rigid and prescriptive (they work well for structured, 
repeatable processes), iii) they are targeted to programmers 
and often designed for mission-critical applications (in fact 
they are not significantly less complex than Java for example), 
and iv) the corresponding software platform is large and 
complex to operate and maintain. 

Interesting lessons can however be learned by looking both 
at research in workflow evolution and adaptive workflow and 
at research on semi-structured workflow models, including in 
particular scientific workflows that are targeted at scientists. 

In the area of adaptive workflows, several approaches have 
been proposed to provide dynamic process management 
[1][2][3], mostly focusing on managing migration of instances 
when the corresponding model is changed. In this paper we 
approach the problem by decoupling (or as we define later, 
light-coupling) instances and models, and automated 
migration is not required – also because the progression of the 
flow is always done by humans. 

A similar approach to the flexibility we offer in the 
lifecycle management is provided by the PROSYT system [4]. 
PROSYT takes the artifact-based approach in which 
operations and conditions for these operations can be defined 
over the concept of artifact type. Nonetheless, each artifact 
type defines just one possible lifecycle, and runtime lifecycle 
model changes are not allowed. This coupling reduces 
expressiveness and generality. In contrast, our approach 
provides independence from the resource being managed 
(universality), late binding of phases, actions, and resources, 
and we focus on simplicity in the model and system due to the 
nature of our target users. 

With a different target, scientific workflows were 
developed for scientific problem-solving environments, in 
which experiments need to be conducted. Experiments can be 
considered as sets of actions operating on data, constituting 
possibly large data flows [5]. Due to the nature of the 
environment, it is not often possible to anticipate a scientific 
workflow, so model-changes and user intervention at runtime 
are necessaries to provide flexibility. Other requirements like 
reproducibility, detailed documenting and analysis are main 
concerns. Aside the fact that we take the artifact-oriented 
approach while this approach relies on a workflow, one main 
difference is that our model can be also descriptive. In other 
words, we consider important the monitoring also from the 
point of view of reflecting a step in the process, even if it does 
not involve a processing. 

B. Document Management 
The approach introduced in this work has roots also in the 

document engineering community. In this area, models and 
tools are developed around the concept of documents, which 
are particular types of resources.  

In [6] the notion of document-centered collaboration is 
introduced. There, the activities of collaboration and 
coordination are considered aspects of the artifact rather than 



workflows. For this, they attach computation to documents 
(i.e. a word processor), whose actions define the workflow. 
However, this approach is focused in decoupling documents 
from workflows rather than providing a workflow modeling 
approach.   In essence, this idea of separating the artifact from 
the workflow is aligned with our idea of decoupling artifacts 
from lifecycles, but we also build a flexible, reusable and 
simple lifecycle management model on top. 

Flexibility is also important in this area. A framework for 
document-driven workflows was proposed in [7], which 
requires no explicit control flow. In this approach, the 
boundary of the flexibility is described by the dependency 
among documents, that is, one document being input of 
another. Nevertheless, as workflow operations are associated 
to changes in the documents, these changes must be done 
under the control of the workflow. In our approach, the 
lifecycle operations are associated to transitions, not to 
changes in the document. Thus, artifact processing (i.e., 
editing a Google Doc document) is freed from the model. 

In [8], the processing of artifacts, from the creation to 
completion and archiving, is captured by lifecycles. 
Nonetheless, the flexibility offered is more focused on the 
artifact representation rather than lifecycle evolution and 
execution. Differing from this, our model provides flexibility 
in the lifecycle modeling and execution, and decoupling 
among lifecycle models and instances. 

C. Lifecycle Modeling Notations 
At present, there are a variety of models, notations, and 

languages for describing lifecycles. The most popular class of 
models is UML, and within UML the most common approach 
is to model lifecycles using state machines, that have exactly 
the purpose of modeling the state and evolution of an object, 
and the events that cause state transition [9]. State machines 
have been extended in a variety of ways, e.g., by allowing 
guards to be placed on transitions, to associate actions to 
transitions (statecharts [9]), and the like. 

We essentially reuse finite state machines as the base for 
the lifecycle model we propose. The contributions of Gelee 
are not so much in the basic model, but rather in the 
instantiation and execution model, in the light-binding 
(described next) between models and instances and in how we 
cope with the heterogeneity of the possible resources to be 
managed and correspondingly with the different kinds of 
actions they support. 

Other notations have been used to model lifecycles and 
processes. The most common ones are Petri nets and activity 
diagrams and their variations and extensions (which include 
also workflows and service composition notations such as 
BPMN [10]). We did not base our implementation on these 
notations as we find them more appropriate for describing 
workflows and procedures (generic sets of actions to be 
executed according to some ordering constraints) more than 
lifecycles (evolution of the state through which a resource 
goes through, and allowed actions in each state). In any case 
the essence of the differences of Gelee would still lie in the 
aspects mentioned above, not so much in the base notation.  

IV. CONCEPTS, MODELS, AND LANGUAGES 
In the following we first describe the lifecycle model at a 

high level, then discuss its execution semantics in terms of 
overall lifecycle executions and action executions. 

A. Lifecycle model: basics 
In essence, a resource lifecycle is a set of phases and phase 

transitions, similar to state machines and state charts. The 
phase describes the stage in life in which the resource is, while 
transitions denote possible evolutions. At any given moment, 
a resource is in one and only one phase. Fig. 1 illustrates all 
the elements of the lifecycle with our example of Section 1.   

At the lifecycle level, all the model needs to know of the 
resource is its URI and its type, a string whose main purpose 
is to denote which is the managing application. For example, 
resource types can be Wiki page, Google doc, Zoho project, 
SVN repository, etc. If the resource is password-protected, the 
model will also need login information. No other information 
is needed for the lifecycle to be able to manage the resource.  

Phases can have associated actions. Actions are operations 
that are executed on the resource as the phase is entered. 
Examples of actions are: changing access rights, notifying 
reviewers, etc (see Fig. 1). Actions have parameters which are 
typically instantiated as a lifecycle begins. For example, 
“notify reviewers” could have as parameter the “reviewers 
list”, which is an information we could have or not beforehand. 

 

 
Fig. 1–EU Project deliverable lifecycle 

At the lifecycle model, neither the lifecycle composer (the 
one designing the lifecycle) nor the resource lifecycle owner 
(the person(s) in charge of advancing the lifecycle on a 
specific resource) needs to be concerned with how they are 
implemented. All actions associated to a phase are executed in 
parallel and anyway in a non-deterministic order. Any 
sequencing must be imposed either by splitting the phases. 
Actions are not guaranteed to succeed and there is no 
transactional semantic imposed by the model (nothing 
prevents the action itself, inside its implementation, of having 
a transactional behavior). The expected behavior is that when 
the actions complete, the lifecycle owner advances the 
lifecycle to the next phase (details on how this occurs are 
provided below). 

When designing a lifecycle model, lifecycle composers can 
select the actions from a library (written by programmers). 
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The actions they select will determine the resource types to 
which the lifecycle can be applied. Thus, models referring to 
resource-specific actions will have more limited applicability. 

Executing actions, however, is not the only purpose for 
having phases in a model. It is perfectly reasonable (and 
indeed useful) to have “empty” phases considering that one of 
the main purposes of lifecycles is also monitoring. For 
example, if the “Elaboration” phase in Fig. 1 involves editing 
a document in Google Docs we may still want to show that the 
current phase is “Elaboration”, even if there is no action 
executed from the lifecycle. 

Finally, the model includes several other features not 
discussed in detail here, such as deadlines and time constraints 
as well as annotations. Annotations are in particular used to 
explain why a lifecycle owner does not follow the standard 
flow, as discussed below. 

B. Lifecycle Execution 
A lifecycle instance is a particular execution of a lifecycle 

on a given resource. When the lifecycle instance begins, the 
lifecycle is associated to a specific resource and actions can be 
configured if necessary. The lifecycle remains active until an 
end phase is reached. End phases are phases with no 
associated actions, and their purpose is only to denote that the 
lifecycle instance is complete in a certain final state. 

In Gelee there is no analogous of a workflow engine. The 
engine is the human, who executes the lifecycle instances (i.e., 
moves the tokens from phase to phase) and, while doing so, 
initiates the execution of actions.  

Another important aspect is that the model is descriptive 
rather than prescriptive. Its purpose is to describe a desired 
lifecycle (and the associated actions), not to impose it. In fact, 
the lifecycle owner can at any time move the token to any 
phase. One can argue that the model could include mandatory 
transitions or actions, but this is one of the many instances 
where we had to veto our desire to add features for the sake of 
keeping the model as lightweight as possible for lifecycle 
owners and designers. 

Finally, owners can change the lifecycle followed by a 
resource, in other words they can change the model associated 
to a lifecycle instance. 

The above denotes a light-coupling4 between models and 
instances. Owners can change the life of a resource without 
changing the model, and designers can change the model 
without affecting running instances if they so desire. If 
designers change a lifecycle model, they can request to 
propagate the change to running lifecycles. Upon receiving 
the request, lifecycle owners can accept or reject the change, 
and if they accept, they can state in which phase the lifecycle 
instance should end up in the modified model. Therefore, even 
in the presence of change, the problem of instance migrations 
is here reduced to state migration. In terms of the lifecycle 
definition, the light-coupling between model and instance 
                                                 
4 We use the term light-coupling instead of loose coupling to emphasize the 

difference with respect to the traditional usage of the loose coupling term in 
the web service context, which refer to the client not being hardcoded to 
interact with a specific service. 

means that the XML that describes the lifecycle definition is 
self-contained.  

A similar light-coupling exists between lifecycles and 
resources: nothing prevents several lifecycle to be defined on 
the same URI, and nothing prevents several lifecycle instances 
on the same URI to be running. 

Taking our example of Fig. 1, in Table I we give an 
example of a lifecycle model definition using XML. This 
specification makes clear how the different components 
mentioned before are related.  

TABLE I 
EXAMPLE OF A XML DEFINITION OF THE LIFECYCLE 

<process uri=””> 
<name>EU Project deliverable lifecycle</name> 
<!—Information about the version--> 
<version_info> 
 <version_number>1.0</version_number> 
 <created_by>lpAdmin</created_by> 
 <creation_date>08/07/2008</creation_date> 
</version_info> 
<!—List of suggested resource_types--> 
<resource> 
 <resource_type>MediaWiki page</resource_type> 
</resource> 
<!—Definition of the phases--> 
<phases_list> 
 <phase id=”elaboration”> 
  <name>Elaboration</name> 
 </phase> 
 <phase id=”internalreview”> 
  <name>Internal review</name> 
  <!—Actions to be executed --> 
  <action_call> 
   <action> 
    <name>Change access rights</name> 
    <uri>http://www.liquidpub.org/a/chr</uri> 
     <parameters> 
     <!—Parameters to be specified at design--> 
      <param id=”paramID”> value </param> 
     </parameters> 
   </action> 
    ... 
  </action_call> 
 </phase> 
 <phase id=”finalassembly”> 
  <name>Final assembly</name> 
  ... 
 </phase> 
 ... 
</phases_list> 
<!—The list of suggested transitions--> 
<transition_list> 
 <transition> 
  <from> BEGIN </from><to>elaboration</to>  
 </transition> 
  ... 
</transition_list> 
</process> 

C. Actions 
Entering a phase triggers the execution of the associated 

actions. The same compromise between definition and 
runtime flexibility that exists in the lifecycle model is 
provided to actions. The actions’ parameter can be fixed at 
definition time, instantiated at lifecycle instantiation time, or 
as the corresponding phase is entered. At execution time, the 
action is invoked by calling an URI that identifies a web 



service (either REST or SOAP), passing as parameters a link 
to the object and a callback URI. 

Upon completion, or periodically during execution, the 
action can then call the callback URI and update on its status. 
The status messages are arbitrary except two defined by the 
model, corresponding to failure and successful completion. 
The status messages have only information purposes. Their 
interpretation or follow-up actions are left to the owner. 

The attentive reader will have noticed that there is no 
analogous of workflow data, neither following the blackboard 
approach nor the data flow approach [11]. The owner inserts 
all parameters “by hand”. Any additional desired behavior 
must be part of the action implementation (as we discuss in 
the following). 

Actions are associated to resource types, and represent 
operations that can be applied over the resource (also 
depending on what the native resource management 
application allows). For example, Google Docs service 
provides a REST API that allows us to perform operations 
over instances of the spreadsheet type. Some of these actions 
are important for the point of view of the model, such as the 
ones that allow us to i) perform CRUD operations, ii) define 
access rights, and iii) subscribe to changes.  

Notice that in this way the actions hide the specificities of 
each resource type. Indeed, it is also possible to define the 
same lifecycle and the same actions on resources at different 
types (e.g. Google Docs and Zoho for documents, Picasa and 
Flickr for photo albums, and control version systems such as 
CVS or SVN). This is done by mapping the same action name 
to different action implementations based on the resource 
types. Details will be provided in the next section. 

We mention here, that the proposed approach could have 
many interesting uses looking at the growing number of 
hosted services that provide access to heterogeneous artifacts. 
Thus, the possibility of handling external resource makes this 
approach an attractive base for integrating such objects with 
user-defined processes. 

D. Roles and Access Rights 
During the lifecycle modeling and evolution, people are 

playing different roles. These roles define the set of operations 
users can perform over the lifecycle. In particular there are 
main roles: the lifecycle manager, the lifecycle instance owner 
and the token owner. The lifecycle manager is the person in 
charge of administrating a lifecycle, and thus, this role allows 
the user to design and modify the lifecycle. The lifecycle 
instance owner, however, is assigned to the person who 
instantiates the lifecycle on the resource. This role allows the 
user to drive and modify the lifecycle instance. Finally, the 
token owner role belongs to the user in charge of performing a 
transition at a given phase. Unlike the instance owner, its 
responsibilities are limited to follow the allowed transitions, 
and typically to specific transitions only. 

From the point of view of the resource we have also the 
resource owner, as the person who has full access rights over 
a given resource, and who can assign permissions for it. 

Thus, instance and resource owners can assign permissions 
or visibility rules over the instance and resources respectively. 

Nonetheless, access rules over the resource are performed by 
the platform that provides the resource, while lifecycle-related 
permissions are supported by the model.  

V. GELEE AT WORK 
This section describes the basic elements that allow the 

prototypal Gelee system to support lifecycle management. We 
first define the overall architecture, and then discuss two 
among the most important aspects: action-resource interaction 
and lifecycle widgets. Although they are “embedded” in the 
architecture section we draw the reader’s attention to it as they 
correspond to key decisions in terms of keeping the model 
simple, and in terms of usability and reusability. 

A. Overall Architecture 
The Gelee architecture is simple, especially due to the fact 

that there is no analogous of a workflow engine that 
progresses the flow from step to step. In essence, the system 
supports design and monitoring as well as invocation of 
actions that, from the core system perspective, are black boxes 
and are embedded into resource type-specific plug-ins that can 
be added as needed. As the primary goal of Gelee is to 
manage online resources and to have a system that is simple 
and usable, it was natural to provide lifecycle management as 
a service, and therefore hosted. Fig. 2 depicts the high-level 
architecture, composed essentially of three layers: the data tier, 
the kernel and the user interface.  
 

 
Fig. 2 - Gelee high-level architecture 

At the bottom of the figure we have the data tier, which 
includes the repositories for users and roles, resources and 
actions definitions, templates, as well as execution logs 
(including model evolution). The lifecycle manager is the 
hearth of the system, and it has a design time and a runtime 
module. The design time interacts with a lifecycle designer 
GUI (discussed next) via a SOAP and REST interface and 
receives definitions and modifications to a lifecycles. The 
runtime module receives lifecycle instance events 
(progression from phase to phase as dictated by the instance 
owner), sent by the lifecycle execution widgets, and action 
execution results, sent by resource plug-ins and discussed next. 
The interaction also in this case occurs via SOAP or REST 
messages. As a consequence of instance progression events, 
the lifecycle manager looks up the action list for the new 
phase reached by the lifecycle and contacts the resource type-
specific plug-in to execute them. 
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B. Resources and Actions 
Different resources are in general managed by different 

applications (Wiki, Flickr, etc..). In many cases, although the 
managing application is different, the kinds of actions that can 
be executed on the resource are similar. For example, in both 
Wiki and Google-Docs I can have the possibility of changing 
the access rights, or sending it for review, or generating a PDF. 
Some of these actions are semantically equivalent but may 
require different parameters (i.e., the “signature” details are 
different). The implementation instead is certainly different 
and depends on the managing application.  

This separation between action types and action 
implementations is another way in which Gelee supports light-
coupling. Designers can define lifecycles (including definition 
of actions) that can be made applicable to different resource 
types. When a lifecycle is instantiated on a specific URI (and 
therefore on a specific resource of a specific type), actions 
types are resolved to specific action signatures and 
implementations. 

The interfacing between the Gelee platform and a specific 
resource occurs through plug-ins or adapters. Developers can 
create adapters for any kind of resource, and implement 
actions that support a given functionality. The action 
implementation may correspond to an existing action type 
defined earlier for other resource types (e.g., send for review) 
or it can be a new action type that does not exist in Gelee. In 
both cases, the adapter needs to register the new action 
implementation with Gelee, to make Gelee aware that there is 
an action implementation for a specific resource type has been 
added, or that a completely new action type is introduced. The 
registration also includes information that Gelee needs for 
invoking the action.  

The action definition is standard and includes information 
about i) the action type, which defines how to access the 
action; ii) parameters, and the time at which their values have 
to be associated; and iii) general  metadata. This definition 
allows Gelee platform to handle all actions in a standardized 
fashion. Table II shows the XML of an action definition. 

TABLE II 
EXAMPLE OF AN ACTION TYPE DEFINITION XML 

<action_type uri=”http://www.liquidpub.org/a/chr”> 
 <name>Change Access Rights</name> 
 <!—Information about the version--> 
 <version_info> 
  <version_number>1.0</version_number> 
  <created_by>lpAdmin</created_by> 
  <creation_date>08/07/2008</creation_date> 
 </version_info> 
<!—Action parameters --> 
<parameters> 
 <param bindingTime=”[def|inst|call|any]”  
        required=”[yes|no]”> 
  <name></name> 
  <value></value> 
 </param> 
</parameters> 
</action_type> 

Once defined, actions are available for use in lifecycle 
definition. When defining lifecycles, users can browse 
through all actions as there is not yet, in general, a binding to 

a resource type (unless the user restricts a lifecycle to a type or 
a set of types). For modifications at runtime, only actions for 
which there is an implementation for the resource being 
managed are shown. An example is shown in Fig. 3. 

 
Fig. 3 - Gelee lifecycle designer 

C. Lifecycle Widgets 
Gelee offers UI-level integration through resource type-

specific widgets and web interfaces. Web UI are provided for 
the lifecycle designers (Fig. 3) and for the monitors. Both 
offer an AJAX-style interface, easy and immediate to use.  

Execution of lifecycles is instead different, as ideally it is 
integrated with the resource, for example, it is shown in the 
same web page, or as a browser plug-in. For this aspect we 
use widgets. Widgets are components ready to be integrated 
with web applications or even desktops. Through widgets, 
users see the lifecycle and the resource they manage side by 
side, as shown in Fig. 4.  

 
Fig. 4. Integrated Resource Lifecycle Management widget 

The integration between lifecycle management and the 
resource, as shown in the above figure, is done by combining 
execution features provided by the lifecycle manager interface, 
and resource-specific information provided by the resource 
manager. The latter offers the interface by which we can 
render any resource in a transparent way. 



Widgets are also subject to visibility attributes. Attributes 
like access rules are automatically auto-discovered from the 
lifecycle definition. Thus, a user interacting with a widget 
could be requested for authentication or not based on the 
visibility attributes, and also, different users could have 
different views of the same lifecycle (i.e., managers, resource 
owners, and stakeholders in general). 

Users may have more specific needs beyond the services 
we provide through our widgets. Therefore, we allow them 
extending from the API to develop their own widgets or web 
components (e.g. a facebook application). Moreover, because 
of the added value of composing the services from different 
source, we prepared our widgets to put in pipes (e.g. Yahoo 
Pipes). For example, users could feed our widgets with 
Google Docs feeds listing documents, and use that list to 
reflect the lifecycle of those documents. 

VI. CONCLUSION AND FUTURE WORK 
In this paper we have described a universal resource 

lifecycle management model and the Gelee prototypal system5. 
The current status of the framework is that components have 
been implemented (but not integrated) except the monitoring 
interface that has been only designed. Hence the source is 
available but the integrated platform is not yet available. 
Resource plug-ins currently include Google Docs and 
MediaWiki. 

We tried to design the Gelee platform based on a very 
concrete case (i.e. European Projects) and based on what we 
and the people in the projects would like and would feel 
comfortable. In this kind of design and developments, we 
have the unique advantage that we ourselves (“we” writing the 
paper, “we” members of the project, but also “we” as 
researchers in general) are the users of the work and therefore 
it is easier to define users’ requirements users are comfortable 
with, especially in terms of resisting the temptation to make 
the approach feature-rich but then inflexible or complex. In 
this sense, the hardest parts of the work were in identifying the 
level of complexity of the model and the light-binding 
approach. The philosophy behind the design choice is to seek 
simplicity whenever we can and tackle complexity only if and 
when needed. Users who need simple things need not be 
bothered with complexity. 

Other innovative aspects of our framework are (1) the 
action-resource model, which we believe provides a useful 
abstraction from the composition perspective; (2) extensibility 
and breadth of resource access and functionality. This is a 
significant departure for example from workflow models or 
even from service composition models.  

The approach we have followed here is to put the 
complexity in the implementation of the actions, while 
keeping the model both general and simple, from the action 
perspective, to the composition designer. Indeed the lifecycle 
model can be described in about a page and learned in a 
matter of minutes, literally. And it can be used to control any 

                                                 
5  Gelee is available for free and is developed in open source at 

https://dev.liquidpub.org/svn/holms/trunk/. 

resource for which there is a plug-in.  
The approach is also kept clean and extensible by 

leveraging plug-ins for resources, which can be externally 
managed and for which we only need a URI of the manager 
and an action interface for which we define the format, and 
that is very extensible.  

In terms of future work, besides completing the monitoring 
aspect, interesting aspects include the integration with engines 
for those cases where engines are actually needed, and the 
challenge here lies in doing so keeping the same level of 
simplicity and flexibility. Another aspect we think it is 
interesting to explore is to link the lifecycle to complex 
resource types, and specifically to composed resources. This is 
a need we also have in the project, as sometimes the artifact 
(which in Liquidpub are called scientific knowledge objects) 
are structured, for example the state of the art is composed of 
the main documents, the references, presentations, etc… and 
managing a complex resource with components and with 
potentially independent but somehow interacting lifecycles is 
something that is part of our future explorations.  
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