
This	is	a	post-peer-review,	pre-copyedit	version	of	an	article	accepted	to	the	IEEE	Internet	Computing.	The	final	
authenticated	version	is	available	online	at	https://doi.org/10.1109/MIC.2020.3024605	

Chatbot integration in few patterns

Marcos Baez
Université Claude Bernard Lyon 1,
Lyon, France

Florian Daniel
Politecnico di Milano, Milan, Italy

Fabio Casati
Tomsk Polytechnic University, Russia

Boualem Benatallah
University of New South Wales,
Sydney, Australia

Chatbots are software agents that are able to

interact with humans in natural language. Their

intuitive interaction paradigm is expected to

significantly reshape the software landscape of

tomorrow, while already today chatbots are

invading a multitude of scenarios and

contexts. This article takes a developer’s

perspective, identifies a set of architectural

patterns that capture different chatbot

integration scenarios, and reviews state-of-

the-art development aids.

This paper was written with the precious contribution of co-author Florian Daniel, who passed
away a few days after completing this manuscript for submission. We remember him here.1

According to Gartner (https://gtnr.it/2MHVDG3, accessed April 1, 2020), by 2020 “twenty-five
percent of customer service and support operations will integrate virtual customer assistant
(VCA) or chatbot technology across engagement channels,” while according to data from
Statista.com the number of “digital assistants [users] worldwide is projected to reach 1.8 billion
by 2021” (https://bit.ly/2HZlOZM, accessed April 1, 2020). As a matter of fact, chatbots have
found their way into our everyday life without creating much discomfort: through platforms such
as WhatsApp, Facebook Messenger and WeChat that can each enable conversational access to
services to more than a billion of monthly users (https://bit.ly/2o3eKlb, accessed April 1, 2020);
while digital personal assistants like Amazon Alexa, Apple Siri and Google Assistant are
opening up new markets for voice users (Amazon alone has already sold more than 100 million
Echo devices, https://bit.ly/2KnTD8w, accessed April 1, 2020).

The efficient development of chatbots – both written and spoken – is thus getting crucial to cope
with the expected growth. While building robust intelligent chatbots is still a challenging
endeavor, a myriad of well-thought and easy-to-use development frameworks have emerged to
support the full life cycle of chatbots from natural language processing to invoking application
programming interfaces2. As development support matures, the challenge is now shifting to

understand how to integrate chatbots seamlessly into existing IT systems, knowledge bases, and
business practices. That is, the questions are which vocabulary and intents should the bot master,
which types of actions should it support, and how to enact them on a pre-existing software
system.

So far, chatbot development has been studied considering different aspects of design, such as
interaction model, application domain, goal-orientation, and dialog management3. Existing
surveys have analyzed popular chatbot systems and chatbot frameworks (e.g., Harms et al.2). All
these classifications follow a white-box approach and focus on the ingredients that define the
internals of a chatbot, which translate into conversational capabilities and, eventually, user
experience.

We propose an original perspective on chatbot development - an architectural gray-box
perspective - and highlight fundamental differences in concepts, technology and purpose across
existing chatbots. Here, we use the term chatbot in its broader sense, to refer to conversational
agents of any kind enabling conversational access to software-enabled services. For example, a
chatbot providing conversational access to a database may enable users to search and navigate
data schemas translating user inputs into SQL queries, while a chatbot providing in-app
assistance to users of an e-commerce website may feature guidance on product search or
checkout options by highlighting HTML elements in the website. Where a chatbot is integrated
into an existing system, e.g., into database or graphical user interface, determines how
conversations must be structured and how intents, chatbot logic and actions must be configured.

Reasoning on the traditional three-layered architecture of applications, our own experience, and a
systematic analysis of 347 papers reporting on chatbot systems in the last five years, we
identified eight patterns that express distinct scenarios of how to integrate a chatbot into existing
software systems. In this paper, we complement these eight resulting patterns with pointers to
respective development aids that are particularly relevant to researchers, software architects and
developers respectively looking for novel research domains and reusable integration knowledge.

CHATBOT DESIGN DIMENSIONS
There are many approaches to the development of chatbots3, and the choice relies on the type of
service and experience the developer plans to deliver to its users. From this perspective, there are
generally two categories of chatbots, i) task-oriented, which are designed to serve specific tasks
in a specific domain, e.g., a weather chatbot, and ii) chit-chat bots, which tend to serve no
specific purpose but aim at holding open-domain conversations with users. Modern task-
oriented chatbots are built on a frame-based architecture, which relies on a domain ontology
(composed of frame, slots and values) that specify the type of user intentions the system can
recognize and respond to2.

The tasks to be served and the complexity of the style of conversation shape the definition of
intents, actions and the dialog control. Intents are the conceptual requests by the user, i.e., the
tasks to be performed. They are provided in natural language through so-called utterances, where
one or more utterances may express the same intent. Identifying user intents (e.g., obtain a
weather forecast) from utterances (e.g., “What’s the weather like today?”) requires a natural
language processing unit (NLP). In order for the NLP unit to know how to map utterances to
intents, it is trained with a dataset of examples of utterance-intent mappings. Intents may have
parameters, so-called slots (e.g., the date of a weather forecast), and the language understanding
part of the NLP must be able to infer their values from utterances (e.g., date: today). Once an
intent is identified, the dialog management component enacts an appropriate action, i.e., a
specific operation serving the intent (e.g., perform a call to the weather API). To disambiguate
similar intents or infer values of slots, additional information, the dialog context, may be used
(e.g., if the chatbot already knows the location of the user, it does not need to ask for it in order
to provide a localized weather forecast). The dialog control is designed either explicitly by
defining conversation flows or derived from previous conversations, or using a combination of
both techniques (refer to Harms et al.2 and Hussain et al.3 for more details on chatbots design and
architecture). We illustrate these concepts in Figure 1a.

Figure 1. (a) Conceptual architecture of a chatbot. (b) Chatbot integration patterns in reference to
the typical three-tier architecture of Web-based systems. The tier where the chatbot is located
steers the training and configuration of the bot, the conversation flow between the bot and the
user, and the resulting actions.

CHATBOT INTEGRATION
The problem of integrating software has generally been formulated in function of what exactly is
to be integrated. We commonly distinguish between data integration, application integration and
user interface (UI) integration, in line with the typical three-tier architecture of distributed

software.4 Data integration brings together data schemas and data from different sources using
techniques like schema mapping and entity resolution. Application integration connects software
systems through their APIs or backend services, e.g., using software adapters and service
orchestration, or through their UIs, like in robotic process automation5. UI integration connects
applications by rendering together independent widgets or pieces of UIs that may have their own
application logic and data, using for example HTML templates and in-browser event propagation
for synchronization.

We define chatbot integration as the problem of integrating conversational capabilities into
existing software systems. Doing so may require developing a conversational agent that starts
from either the data, application logic or graphical UI of the system to support natural language
conversations leveraging Artificial Intelligence (AI) or more traditional software engineering
approaches.

Figure 1b illustrates the eight patterns for chatbot integration we identify in relation to the
traditional three-layered architecture of distributed systems. Taking this architecture as a
reference point, we derived the integration patterns considering the following criteria i) to what
layer of the architecture is the chatbot integrated (e.g., Application logic), and what specific
component within the chatbot acts upon (e.g., API, Business process), and ii) how uniquely the
layer and related components inform the chatbot design dimensions and capabilities.

We followed a mixed approach in deriving and refining the integration patterns. We first
identified a set of relevant papers, which were discussed in two iterations to reach an initial set of
seven patterns. In order to validate and refine this original set, we then performed a systematic
search on Elsevier’s Scopus database for papers focusing on chatbots (keywords: chatbot,
talkbot, conversational agent, voice user interface, smart speaker, smart assistant, Amazon
Alexa, Google Assistant), describing implementations (keywords: implementation, prototype,
system, architecture), and published in English language since 2015 until March 5, 2020. The
resulting 938 papers were screened by two researchers. In an initial phase a sample of 100 papers
were screened and discussed by both researchers (coding agreement 87%), and the rest was
divided and annotated independently. In the process, the researchers annotated each paper based
on i) relevance, ii) the associated pattern (according to the pre-defined criteria), while taking note
of iii) potential deviations from the initial patterns. These deviations were discussed jointly by
the researchers, and as a result some of the existing patterns were refined (definition and scope)
and one new pattern emerged, for a total of eight integration patterns.

In the next section, we elaborate each of the identified patterns in more detail, concentrating on
the core differences in setting up the respective chatbots. We recall from the design dimensions
that configuring a chatbot requires developers to provide (i) the intents the chatbot should
understand, (ii) training data to instruct the NLU, (iii) action implementations to serve intents,
and (iv) dialog control implementation to manage the conversation. Thus, we focus on these

four aspects to describe how the characteristics of the integration patterns shape the chatbot
design dimensions and inform the development support provided by frameworks and platforms.

INTEGRATION PATTERNS
To illustrate the extent of the research on each of the integration patterns, we start by briefly
describing the results of the systematic screening process. We identified 347 relevant chatbot
systems, with 290 referring to specific chatbot implementations and 64 to frameworks, platforms
or methods supporting chatbot development. The resulting integration patterns illustrated in
Figure 1b are stand-alone (240), information retriever (65), IoT interface (21), query engine (9),
GUI agent (4), in-app assistant (4), business process interface (2) and API caller (2). The full
list of papers and the annotations are available at https://bit.ly/2xNBZqF.

Since the stand-alone pattern represents instances of bots developed independently of other
systems, and whose design is a reflection of the developer choices, not of the architectural layer
or related artefacts, we focus the discussion below on the other seven patterns.

In-app assistant
An in-app assistant is a bot that lives inside an existing application (e.g., a website or a desktop
application) and extends the apps’s features with conversational capabilities, e.g., using pop-ups,
embedded components or conversational landing pages. An early example in this space is
“Clippy”, Microsoft’s assistant for its desktop Office suite, although more recent work and
frameworks focus on augmenting websites, e.g., to provide customer service.

The available user intents vary depending on the specific supporting platform, but they typically
fall in one of the following categories: question & answering (conversational FAQ), navigation
support (shortcuts and guidance in certain user workflows), guided exploration (assisting users
in identifying a product or resource), data collection (a conversational form replacement), and
chit-chatting. Chatbot actions can result in consulting the knowledge base to serve a request,
triggering in-app navigation, or connecting to an integrated system to execute related tasks (e.g.,
post a new ticket). In terms of dialog control, one of the prominent aspects of this pattern is that
the dialog context can be defined by the user actions in the app (e.g., current page or interaction
history). Thus, the user can request or be prompted with assistance depending on the navigation
context. As for the training, it can range from simply providing an URL in input (in the case of
websites) and connecting to a knowledge base (e.g., a ticket system), to an explicit design of the
conversation flow.

While we identified only few works in this pattern, the development of this type of bots is widely
supported by commercial platforms. Among the research works, SuperAgent6 is a prominent
example of a chatbot extension for online shopping that can leverage both publicly available

product information and user-generated data to support customer service efforts. Commercial
solutions vary in the extent of support and automation in the chatbot generation. Acobot
(https://acobot.ai) is an example of a platform where the chatbot is built from the content of the
website and oriented toward assisting users during their browsing activity; while Instabot
(https://www.instabot.io) facilitates domain experts in generating the chatbots but require the
explicit definition of conversation flows.

Conversational GUI agent
A conversational GUI agent is a bot that provides conversational access to the graphical user
interface (GUI) of existing applications, much like traditional screen readers for blind or visually
impaired users. For example, a bot in this category would allow a user to browse the contents of
a news website using Amazon Alexa or interact with a mobile app using Google Assistant.

Intents in this pattern go from generic navigation (e.g., opening a website) and interacting with
individual UI components (e.g., clicking a button), to high-level intents defined by the offerings
of the specific application, be it transactional (e.g., booking a ticket) or informational (e.g.,
performing a query). Chatbot actions in this pattern mimic user interactions with UI components,
and selectively fetch content so as to serve and respond to user requests. Dialog control is
defined by the structure and state of the application. Training, from the perspective of the
developer, consists in either augmenting the application definition with bot-specific annotations
(and possibly utterances) so that the bot definition is part of the app, or defining conversation
flows externally while referencing UI elements.

Approaches to Conversational UI agents can be found notably for Web browsing and mobile
applications. Among the most recent proponents of this idea in web browsing, Baez, Daniel and
Casati7 propose full conversational access to websites where a chatbot mediates the interaction
between the user and the website, allowing users to express their goals in natural language; while
Ripa et al.8 focus on making informational queries over content intensive websites accessible via
voice-based interfaces (e.g., smart speakers). For mobile applications, Tarakji et al.9 propose a
framework that allows third-party developers to create voice user interfaces for existing Android
apps, thus enabling users to interact with the apps in their mobile phones from smart speakers.

Conversational API caller
A conversational API caller is a bot that is able to mediate between a user and a generic back-
end service like a RESTful API or SOAP web service identified by the user. An example is a bot
that is generated directly from an OpenAPI specification10.

The intents in this case are a reflection of the functionality exposed by the API endpoint, which
are derived from the API specification (e.g., OpenAPI, WSDL, WADL) or the service signature.
Browsing and navigating a resource model (i.e., navigating through the relations between web

artefacts) is conceptually another possibility in this pattern. Actions in this context refer to
“external” calls to the associated service using HTTP / SOAP invocations. Dialog control is
focused on slot filling, meaning collecting the necessary parameters for invoking the APIs. The
input to the training and chatbot generation process consists in providing the API specification10,
or a service knowledge graph11.

The generation of conversational interfaces from API descriptions is an approach that has been
conceptualized and prototyped10,11, but has not percolated in commercial products yet. Among
the frameworks proposed in the literature, Varizi et al.10 turns an OpenAPI specification directly
into a chatbot implementation, although with limited NLU capabilities based on conventions.
Zamanirad12 instead proposes a system that allows bot developers to simply state the goal of the
bot or an example utterance, identify a matching API from an evolving knowledge graph of
services, and generate the code for a target chatbot platform.

Conversational business process interface
A conversational business process interface is a chatbot that enables human process participants
to interact with a business process in natural language, where the business process may
orchestrate multiple human and software agents (APIs). Examples of business processes studied
in literature are alert management12 or IT change management13.

Typical intents in interactions with a business process are obtaining information about the
structure of the process (e.g., actors, tasks, inputs and outputs) or about the progress of a process
in execution (e.g., which task is currently being processed, who is responsible for it), or
performing activities (tasks) to advance the state of the process. Actions enact queries to obtain
information about the process, and API calls to advance it. Dialog control is driven by the model
and state of the process. The input to the training is the process model definition (e.g., BPMN).

One of the first evidence we found of conversational process interfaces is a patent by Google12,
which proposes the use of a chatbot component in so-called communication-enabled business
process (CEBP) applications, i.e., applications able to orchestrate reactive and proactive
communication events; no specific details about the internals of the chatbot infrastructure are
however provided. Kalia et al.13 propose a methodology for the extraction of a bot from a BPMN
business process model with the goal of automating the process and providing process
participants with a conversational UI; an IBM Watson model for the chatbot is constructed
manually.

Conversational IoT interface
A conversational IoT interface is a chatbot that provides conversational access to one or more
physical devices to read device properties and/or enact actions through the devices. Examples are
voice interfaces for smart homes or voice controls for vehicles or robots.

The intents and actions of the bots that implement this pattern are mostly limited to the specific
devices’ capabilities, such as reading a temperature measure or opening the window blinds; small
talk intents without specific effect on the devices are of lower importance, if supported at all.
Dialog control primarily focuses on command interpretation and slot filling and does not require
sophisticated internal logics; most ad-hoc implementations not based on pre-canned, AI-based
frameworks adopt simple rule-based input interpretation. The training prevalently follows an ad-
hoc methodology in function of the available device functionalities.

In terms of development support, RedBot (http://red-bot.io) is a chatbot platform for the
development of chatbots for Node-RED IoT applications. The accompanying visual tool extends
Node-RED’s modeling language with chatbot-specific elements compatible with, among others,
Telegram, Facebook Messenger, Alexa, Viber. Hidalgo-Paniagua et al.14 extended RedBot to
support controlling more complex physical robots. Einarsson et al.15 propose SmartHomeML, a
domain-specific modelling language for smart home applications, that allows users to easily
define new skills (functionalities) that can then automatically be integrated into Amazon Alexa
or Google Home.

Conversational query engine
A bot is a conversational query engine if it provides conversational access to a (semi)structured
data/knowledge base, that is, if it allows users to interrogate the schema (metadata) of a database
and to inspect specific instances (data) by translating natural language instructions into low-level
query languages, such as SQL or SPARQL.

Intents in this pattern are defined by the capabilities of the underlying query engine and
associated language, although recent work also proposes to augment data exploration with
statistical analyzes over the data (e.g., navigating data clusters)16. Actions are translated from
user requests into engine-specific queries (e.g., SQL or SPARQL statements) or higher-level data
processing functions, but the dialog control is ultimately data driven. In terms of the input to
training and generation, the salient approaches rely on the database structure and contents,
although some approaches are augmented by domain-specific17.

Recent approaches propose techniques for generating conversational interfaces for relational
databases given annotated database schemas18, translating natural language requests into
SPARQL queries17, and providing conversational data exploration augmented by statistical
properties in the data, enabling users to navigate data clusters in guided dialogs16.

Conversational information retriever
A conversational information retriever bot is one that enables natural language queries over a
typically unstructured set of documents or data. Bots in this space are emerging as efficient tools
to answer even complex and open questions to large and disperse data.

Intents in this pattern are described by the questions that users can ask, which are defined by the
content and structure of the documents. We identify three main types of intents in this space:
question and answering, typically questions that can be answered by referring directly to the
contents of a document (e.g., “What are the steps to preparing a sponge cake?”); search &
recommendation, where the user engages in a conversation with a bot to search and discover
relevant information or documents (e.g., “I’m looking for good sponge cake recipes”); and
document-centered queries, aiming at inquiring about the metadata of documents (“When was
this document updated?”). Actions in this pattern are essentially calls to an internal answer
generation engine, which predicts the answer to the user’s question based on the type of request.
Regarding the dialog style, it is user initiated for when the system reacts to user queries but can
also be proactive when providing recommendations. Queries can be answered either in a single
turn or in multi-turn conversations. The training process starts with documents such as, FAQ
pages, product manuals and spreadsheets.

Commercial platforms typically focus on supporting Q&A tasks, enabling customers to go from
data to bot in minutes (e.g., https://www.qnamaker.ai, https://passage.ai) without requiring
coding experience. These platforms often allow customers to import documents to create a
knowledge base, modify the knowledge base and to customize the inferred conversation design.
Recent works also propose frameworks to address specific domains or tasks, such as
recommendation19.

DISCUSSION AND OUTLOOK
In this article we brought attention to the problem of chatbot integration as an emerging area of
research. The eight patterns we describe in this article show that integrating conversational
capabilities into existing software systems comes in very diverse flavors, depending on which
type of service the target chatbot should deliver and on where in a system’s architecture it wants
to source conversational knowledge from. We highlighted how these patterns inform the design
and capabilities of chatbots, while providing relevant pointers, as a first step towards further
investigating associated integration challenges. We highlight the key differences between the
identified patterns in Table 1.

Table 1 - Summary of chatbot integration patterns and main dimensions

 Intents Training / config. Dialog control Actions Frameworks

Stand-alone
agent

Generic and
defined by
developers

Ad hoc identified by
developer

Custom or ready
framework

Custom
developed by
developers

Rasa,
DialogFlow, IBM
Watson

In-app
assistant

Contextual Q&A,
direct navigation,
data input, guided
exploration, chit-
chat

App content and
structure, underlying
KB, domain-specific
models

Hybrid generic and
GUI-driven, explicit
conversation flows
for guidance

App navigation,
KB interrogation
for Q&A,
contextual help,
transaction
execution

Acobot, Instabot

GUI agent Generic app
navigation, data
input, app-specific
functions

App content and
structure, external
training data, pre-
trained models for
specific UI actions

GUI-driven (state
depends on GUI),
exploratory

Mimic user
interactions, orient
user inside app,
read out content

--

API Caller API access or
exploration,
resource
exploration

API specification,
sample data, reuse
training data from
similar APIs

Driven by
interaction protocol
of API, exploratory

Issue HTTP /
SOAP calls,
visualize data

--

Business
process

interface

Obtain process
model information
or process status
updates, execute
activities

Business process
model (e.g., BPMN),
pre-trained domain
models

Process model
driven, process
state driven

Query model for
activities, roles,
actors,
responsibilities,
issue API calls

--

IoT interface Obtain device info,
operate devices,
automate operation

Device capabilities,
device properties,
pre-trained models

Device/environment
status, command
interpretation

Sense and
actuate using
HTTP / CoAP
calls

RedBot

Query engine Query metadata,
traverse data
schema, query
data instances,
obtain statistical
analyses

Database schema,
data instances,
domain-specific
ontologies

Data structure
driven, iterative
query construction,
data analysis
dependent

Issue queries
(e.g., in
SQL/SPARQL),
apply data
analysis functions,
visualize results

--

Information
retriever

Generic Q&A,
generic search,
recommendation

Document content,
data pool turned into
a KB / KG

Mostly Q&A
resolution, KB and
topic driven;
Explicit follow up

Guessing
answers from KB /
KG

QnA Maker,
Passage.ai

While the presence of these patterns shows efforts in enabling conversational access at all the
three levels of the reference architecture, some patterns are still underdeveloped. Except for
stand-alone agents, in-app assistants and conversational information retrievers, we however
register a general lack of pattern-specific development aids. This comes somewhat as a surprise

if we consider the wealth of use cases that ask for conversational capabilities that comply with
the identified patterns. Just to mention few:

● Fast prototyping: all organizations today have their own websites for external or internal
use. Conversational GUI agents or API callers could leverage on these resources for the
fast implementation of conversational services.

● Supporting domain-experts in analytical tasks, by generating conversational interfaces to
domain-specific databases or datasets, either with query engines or information retrievers.

● Improving accessibility and ubiquitous access, by providing conversational access to
applications via Conversational GUIs.

● Supporting automation and domain-specific workflows, e.g., by replacing repetitive tasks
with bots that can collaborate with humans, leveraging on Conversational GUI and BPs.

Raising the need for development assistance seems timely and wants to stimulate research. We
identified patterns and solutions developers can already rely on but designing effective
conversational interactions with existing systems is still in its infancy20. As the space of
interconnected devices develop, we are likely to see new patterns emerge, as indicated by vision
papers on conversational interfaces to drones and self-driving cars.

Limitations: The integration patterns described in this work are tied to the three-tier architecture
of distributed systems, and the pattern definition adopted. They represent the most salient
patterns from our analysis of 347 papers reporting on chatbot systems, although the list cannot be
considered exhaustive due to the risk on missing out relevant work.

REFERENCES
1. Baez, M., Casati, F., Gaedke, M., & Dustdar, S. (2020). Remembering Florian Daniel. IEEE

Internet Computing, 24(03), 58-59.
2. Harms, J. G., Kucherbaev, P., Bozzon, A., & Houben, G. J. (2018). Approaches for Dialog

Management in Conversational Agents. IEEE Internet Computing, 23(2), 13-22.
3. Hussain, S., Sianaki, O. A., & Ababneh, N. (2019, March). A Survey on Conversational

Agents/Chatbots Classification and Design Techniques. In Workshops of AINA (pp. 946-956).
Springer, Cham.

4. F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera and R. Saint-Paul. Understanding UI
Integration: A survey of problems, technologies and opportunities. IEEE Internet Computing
11(3), May/June 2007, Pages 59-66.

5. van der Aalst, W.M.P., Bichler, M. & Heinzl, A. Robotic Process Automation. Bus Inf Syst Eng
60, 269–272 (2018). https://doi.org/10.1007/s12599-018-0542-4

6. Cui, Lei, Shaohan Huang, Furu Wei, Chuanqi Tan, Chaoqun Duan, and Ming Zhou. Superagent:
A customer service chatbot for e-commerce websites. Proceedings of ACL 2017, System
Demonstrations (2017): 97-102.

7. Baez, M., Daniel, F., & Casati, F. (2019, November). Conversational Web Interaction: Proposal
of a Dialog-Based Natural Language Interaction Paradigm for the Web. In International
Workshop on Chatbot Research and Design (pp. 94-110). Springer, Cham.

8. Ripa, G., Torre, M., Firmenich, S., & Rossi, G. (2019, July). End-User Development of Voice
User Interfaces Based on Web Content. In International Symposium on End User Development
(pp. 34-50). Springer, Cham.

9. Tarakji, A. B., Xu, J., Colmenares, J. A., & Mohomed, I. (2018, June). Voice enabling mobile
applications with UIVoice. In Proceedings of the 1st International Workshop on Edge Systems,
Analytics and Networking (pp. 49-54).

10. Vaziri, M., Mandel, L., Shinnar, A., Siméon, J., & Hirzel, M. (2017, October). Generating chat
bots from web API specifications. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (pp.
44-57).

11. Zamanirad, Shayan. (2019). Superimposition of Natural Language Conversations over Software
Enabled Services.

12. Gaulke, D. and Kornbluh, D., Avaya Inc, 2015. Interactive user interface to communication-
enabled business process platforms method and apparatus. U.S. Patent 9,043,407.

13. Rizk, Y., Bhandwalder, A., Boag, S., Chakraborti, T., Isahagian, V., Khazaeni, Y., Pollock, F.
and Unuvar, M., 2020. A Unified Conversational Assistant Framework for Business Process
Automation. arXiv preprint arXiv:2001.03543.

14. Hidalgo-Paniagua, Alejandro, Andrés Millan-Alcaide, Juan P. Bandera, and Antonio Bandera.
"Integration of the Alexa assistant as a Voice Interface for Robotics Platforms." In Iberian
Robotics conference, pp. 575-586. Springer, Cham, 2019.

15. Einarsson, Atli F., Patrekur Patreksson, Mohammad Hamdaqa, and Abdelwahab Hamou-Lhadj.
"SmarthomeML: Towards a domain-specific modeling language for creating smart home
applications." In 2017 IEEE International Congress on Internet of Things (ICIOT), pp. 82-88.
IEEE, 2017.

16. Sellam, T., & Kersten, M. (2016, June). Have a chat with clustine, conversational engine to query
large tables. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics (pp. 1-6).

17. Rajosoa, M., Hantach, R., Abbes, S. B., & Calvez, P. (2019). Hybrid Question Answering System
based on Natural Language Processing and SPARQL Query.

18. Castaldo, Nicola, Florian Daniel, Maristella Matera, and Vittorio Zaccaria. Conversational Data
Exploration. In International Conference on Web Engineering, pp. 490-497. Springer, Cham,
2019.

19. Iovine, A., Narducci, F., & Semeraro, G. (2020). Conversational Recommender Systems and
natural language: A study through the ConveRSE framework. Decision Support Systems, 113250.

20. Mavridis, P., Huang, O., Qiu, S., Gadiraju, U., & Bozzon, A. (2019, June). Chatterbox:
Conversational interfaces for microtask crowdsourcing. In Proceedings of the 27th ACM
Conference on User Modeling, Adaptation and Personalization (pp. 243-251).

View publication stats

https://www.researchgate.net/publication/345196520

