
Automatic Generation of Chatbots for
Conversational Web Browsing

Pietro Chittò1, Marcos Baez2, Florian Daniel1, and Boualem Benatallah3

1 Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
pietro.chitto@mail.polimi.it, florian.daniel@polimi.it

2 LIRIS – University of Claude Bernard Lyon 1, Villeurbanne, France
marcos.baez@liris.cnrs.fr

3 University of News South Wales, Sydney, Australia
boualem@cse.unsw.edu.au

Abstract. In this paper, we describe the foundations for generating a
chatbot out of a website equipped with simple, bot-specific HTML anno-
tations. The approach is part of what we call conversational web brows-
ing, i.e., a dialog-based, natural language interaction with websites. The
goal is to enable users to use content and functionality accessible through
rendered UIs by “talking to websites” instead of by operating the graph-
ical UI using keyboard and mouse. The chatbot mediates between the
user and the website, operates its graphical UI on behalf of the user, and
informs the user about the state of interaction. We describe the concep-
tual vocabulary and annotation format, the supporting conversational
middleware and techniques, and the implementation of a demo able to
deliver conversational web browsing experiences through Amazon Alexa.

Keywords: Non-visual browsing · Conversational browsing · Chatbots

1 Introduction

Conversational agents are emerging as an exciting new platform for accessing
online services that promise a more natural and accessible interaction paradigm.
They have shown great potential for regular users in hands-free and eyes-free
scenarios but also for making services more accessible to people with disabilities
and visual impairments [11], as well as groups, such as older adults, often chal-
lenged by service design choices [9]. This new generation of agents is however not
able to natively access the Web, requiring web developers and content creators to
implement specific “skills” to offer their content and services on Amazon Alexa,
Google Assistant and other platforms. This requirement represents a huge bar-
rier for developers and creators who might not have the skills or resources to
invest, and a missed opportunity for making the Web accessible to everyone.

Integrating conversational capabilities into software enabled services is an
emerging research topic [3], as pushed by recent works by Castaldo et al. [5] on

This is a post-peer-review, pre-copyedit version of an article accepted to the 29th
International Conference on Conceptual Modeling, ER 2020.

ar
X

iv
:2

00
8.

12
09

7v
2

 [
cs

.C
Y

]
 2

1
O

ct
 2

02
0

2 P. Chittò et al.

inferring bots directly from database schemas, Yaghoub-Zadeh-Fard et al. [13] on
deriving bots from APIs, and by Ripa et al. [12] on generating informational bots
out of website content. While these works are facilitating chatbot integration at
different levels of the Web architecture, they do not address the challenges of
generating chatbots from both content and functionality available in websites.

In this paper, we take a software engineering approach and study how to
enable conversational browsing of websites equipped with purposefully designed
annotations. This represents the first step towards our vision [2] of enabling users
to access the content and services accessible through rendered UIs by “talking to
websites” instead of by operating the graphical UI using keyboard and mouse.
We start with an annotation-driven approach as the focus is to lay the foundation
for conversational browsing and to identify all necessary conversational features
and technical solutions, which can then lead to the development of support tools
and automatic approaches. In doing so, we make the following contributions:

– conceptual vocabulary for augmenting websites with conversational capabili-
ties, able to describe domain knowledge (content and functionality) while ab-
stracting interaction knowledge (enacting low-level interactions with sites);

– an approach, architecture and techniques for generating a chatbot out of a
website equipped with simple, bot-specific HTML annotations;

– prototype implementation and technical feasibility of the proposed auto-
matic chatbot generation approach.

In the following we describe a concrete target scenario, the overall approach,
and the prototype implementation.

2 Scenario and Requirements

We describe our target scenario by illustrating the interactions of a user brows-
ing a typical research project website using a smart speaker such as Amazon
Echo (Figure 1). After the user requests access to the research project website,
a conversational agent tailored to the website content, functionality and domain
knowledge is automatically generated to mediate the interactions between the
user and the target website. During these interactions, i) the user is informed
of the available features, ii) can browse the website in dialog-based natural lan-
guage interactions with the agent, and iii) the agent identifies and performs the
appropriate web browsing actions on the target website on behalf of the user

Before diving into the requirements posed by the envisioned scenario, we
need to introduce some concepts related to chatbot development, in what refers
to task-oriented chatbots. Modern task-oriented chatbots are built on a frame-
based architecture, which relies on a domain ontology (composed of frame, slots
and values) that specify the type of user intentions the system can recognize
and respond to [8]. Intents refer to the task requested by the user and the
actions to the specific operations performed by the chatbot to serve the intent.
Identifying user intents given a request in natural language (e.g., “Tell me about
Florian Daniel”) requires a natural language processing component trained with

Conversational Web Browsing 3

Natural language dialog

Tell me about the project

Who are the researchers involved?

Tell me more about Florian Daniel

Ok, getting project information:
The conversational web browsing
project aims at providing a dialog…

1

Bot manager
[REST API]

Policy

Conversational browsing server [Rasa + Python]

Application-speci�c bot (automatically generated!

"eadless
browser
[Selenium]

Actions

#$%
Parser &
generator
[Chatito]

Intents'
utterances
training data

Answer
tem(lates

)ialog manager

#$*

Ele�ent-speci�c bots (ool
((re+canned!

o(erate

(arses
"T,$

gen-uses

uses

�
��

%tterance

Answer

%tterance Answer

Training
tem(lates

uses

These are 3 researchers involved:
Florian Daniel, Pietro Chittò,
Marcos Baez

Site opened. In this website I can:

- Tell you about the project
- Tell you the about its progress
- Tell you about the researchers
- …

Al
ex

a
Vo

ic
e

Se
rv

ic
e

Home Progress About

News

List of papers

Title Topics Abstract

Project info

Latest paper

The conversational web
browsing project aims at…

Author bios

Florian Daniel

Pietro Cittò

Marcos Baez

Home Progress About

Conversational browsing server Annotated Website[Rasa + Python]

Audio Text
Automated web

browsing actions

Fig. 1: Conversational browsing scenario: the user talks to a bot not the website.

a dataset of examples (e.g., researcher info: [“Tell me about @researcher”, “Who
is @researcher?”, ...]) to correctly classify the request and infer the slots and
values (e.g., intent: researcher info, researcher : “Florian Daniel”). Then the
dialog management component, based on intent, the input provided and the
conversation context, decides on the appropriate action (e.g., parse associated
DOM element). A response is generated using a natural language generation
component that elaborates the results and presents them in a format that fits the
conversation medium (refer to [8] for more on chatbot design and architecture).

Having introduced the scenario and main concepts, we refine some key re-
quirements to enabling conversational browsing as identified earlier [2]:

R1 Orientation: The bot must be able to summarize the content and/or func-
tionalities offered by the website, to guide users through site offers at any
point and to provide for basic access structures (e.g., “In this site you can...”).

R2 Inferring intents and parameters: The bot must be able to understand
the user’s intent and enact suitable actions in response. Intents may be
application-agnostic (e.g., fill a form field) or application-specific (e.g., post
a new paper). The latter requires the bot to infer the intents from the website.

R3 Training and vocabulary: The bot should be able to speak and under-
stand the language of the target website, so as to identify intents and elab-
orate proper responses. This requires deriving domain knowledge directly
from the website, training the bot to identify application-specific intents.

R4 Browsing actions enactment: As the bot mediates between the user and
the website, enacting an action in response to an identified intent requires
a strategy for translating high-level user requests into automated low level
interactions with the website.

R5 Dialog control from rendered UIs. As the user browse the website con-
versationally, the chatbot should track the state of the dialog and choose

4 P. Chittò et al.

dialog actions considering the evolving state of the rendered UI. That is, it
should consider the conversation context as well as the browsing context.

3 Conversational Web Browsing: Approach

The approach illustrated in Figure 1 is based on three main ingredients (i) pur-
posefully designed bot annotations, (ii) a middleware comprised of chatbot gen-
eration and run-time units, and iii) a medium-specific conversational interface.
Web developers enable conversational access by augmenting their websites with
bot-specific annotations, which associate knowledge about how to generate
a conversational agent with specific HTML constructs. Initiating a conversa-
tional browsing session then triggers the chatbot generation process. This
process is about generating an application-specific bot tailored to the intents
and domain knowledge of the target website, while reusing a library of generic
element-specific bots. Using a conversational interface (e.g., Amazon Echo) the
user can start a dialog with the website. At run-time, the middleware processes
the user requests in natural language, selects the relevant bot and executes the
appropriate actions on the rendered GUI of the website.

Supporting conversational browsing is not trivial and requires weighing sev-
eral options. The most important decisions that resulted in our solution are:

– Domain vs. interaction knowledge: Using a website generally requires
the user to master two types of knowledge, domain knowledge (to understand
content and functionalities) and interaction knowledge (to use and operate
the site). This distinction is powerful to separate concerns in conversational
browsing. Domain knowledge, e.g., about the research project and scientific
publications, must be provided by the developer, as this varies from site to
site. Interaction knowledge, e.g., how to fill a form or read text paragraph
by paragraph, can be pre-canned and reused across multiple sites. We thus
distinguish between an application-specific bot and a set of element-specific
bots [R1,R2]. The former masters the domain, the latter enable the user to
interact with specific content elements like lists, text, tables, forms, etc.

– Modularization: Incidentally, the distinction between application- and ele-
ment-specific bots represents an excellent opportunity for modularization
and reuse. Application-specific bots must be generated for each site anew
[R3]; element-specific bots can be implemented and trained once and reused
multiple times. They can be implemented for specific HTML elements, such
as a form, or they can be implemented for a very specific version thereof,
e.g., a login form. However, the presence of application- and element-specific
bots introduces the need for a suitable bot selection logic.

– Bot selection: As a user may provide as input any possible utterance at
any instant of time, referring to either application-specific or element-specific
intents, it is not possible to pre-define conversational paths through a web-
site. Instead, some form of random access must be supported. We introduce
for this purpose a so-called bot manager, which takes as input the utterance

Conversational Web Browsing 5

and forwards it to the bots registered in the system [R5]. Depending on the
context (e.g., the last used bot) and the confidence provided by each invoked
bot, it then decides which bot is most likely to provide the correct answer
[R1,R2]. Thanks to the bot manager, the ensemble of application-specific and
element-specific bots presents itself as one single bot to the user.

4 Annotating Websites with Conversational Knowledge

The goal of the work presented in this paper is to prevent asking developers to
provide full-fledged chatbots for their websites in order to support conversational
browsing. The challenge is asking them to provide as little information as possible
– the annotation – such that, together with the content and functionality that are
already in the site (its GUI), it is possible to automatically generate a chatbot.

Conceptual model. Let’s start with introducing the key concepts that enable
conversational browsing. Figure 2 uses an intuitive, graphical notation to con-
textualize them in a model of a simple website about a research project, e.g.,
our project on conversational browsing. The site consists of a set of pages, of
which the model ignores the actual content; the design of such content has tra-
ditionally been approached by modeling languages like WebML [6] or IFML [4].
Instead, the model hypothesizes a conceptual vocabulary that could extend the
pages, subsuming the presence of suitable content4. We identified these concepts
through a literature and systems review and prototyping efforts:

– Intents: These are the core ingredients of conversational browsing. Intents
annotate HTML constructs and thereby qualify their contents as relevant for
the enactment of the intents’ actions [R2]. More importantly, intents enable
the user to access content and functionality. We distinguish three types:

• Selection intents identify HTML constructs the developer wants to
make accessible through the chatbot. In order to guide user inside com-
plex pages, selection intents can be structured hierarchically, which tells
the bot to read out options at different levels of detail.

• Link intents enable the user to navigate among pages of the site. Each
navigation may reset the context of the conversation and prompt the bot
to inform the user of the new intents available.

• Built-in intents are the intents that the framework comes with in order
to support basic interactions, such as orienting the user inside a page by
proactively telling him/her which options are available (e.g., “What is
the page about?”)[R1]. Built-in intents do not require any annotation.

– Conversational links: These are the counterpart of hyperlinks in conversa-
tional browsing and tell link intents their target [R4]. Similar to conventional
links, we distinguish two types of conversational links:

4 Note that here we do not want to introduce an own, new modeling notation for
conversational browsing; Figure 2 serves an intuitive, illustrative purpose only.

6 P. Chittò et al.

About us

Home

Link
Home

LatestPaper

Text

Title

Text

Topics

Project progress

Text

AuthorBios

List

ProgressInfo

intent =
AuthorBios

Text

Abstract

Login/Register

Form

Login

Personal Home

Text

Instructions

Link
Logout

Non-contextual,
conversational link

Type of element-specific,
conversational agent acti‐
vated by intent

Link
Login

Link
Progress

Link
About

List

ListOfPapers

Link
Home

Link
Login

Link
Progress

Link
About

Link
Home

Link
Login

Link
Progress

Link
About

Text

LoginFeedback

Web page

Link intents

Contextual,
conversational linkIntents

LatestArticle
- Latest article
- Lastest news
- Last article
- Last one
- …

Specification
of synonyms
for training
data gener‐
ation

Target intent
selector

Fig. 2: Informal graphical model of a project website explaining the core concepts
of application-specific, conversational browsing. Labels in italics define the used
graphical notation. Gray-shaded intents are copied from the Home page.

• Non-contextual conversational links are links that can be navigated
with the help from the bot and result in the loading and rendering of a
new page, causing the bot to start a new browsing context. That is, each
page accessed through a non-contextual link causes the bot to inform
the user about the content of the page [R1]. For example, Login follows
a non-contextual link to a new page (with a different menu of options),
triggering the bot to inform of the available options (Instructions, Login).

• Contextual conversational links are links that are directed not only
toward a new page but also toward a specific target intent. If a user thus
accesses a page through a contextual link, the bot will immediately start
performing the action associated with the target intent [R5], e.g., About
(contextual link) will trigger AboutBios (reading the associated text).

– Bot types: If a selection intent identifies the HTML construct to act upon,
i.e., if it cannot be further split into sub-intents (e.g., LatestPaper → Title),
the type of element-specific bot able to perform the expected action can be
specified (Title: Text). As explained earlier, the number of element-specific
bots is theoretically unlimited, but we identify the need for a minimum set
of element-specific bots able to manage the following content elements [R2]:

• Text, i.e., text organized into headings, sub-headings and paragraphs.
Element-specific actions are reading out loud the full text, reading the
titles only, jumping back and forth among paragraphs, etc.

• List, i.e., an ordered or unordered list of items. Element-specific actions
are telling the number of items, reading them out, navigating them, etc.

• Table, i.e., content organized in rows and columns. Element-specific
actions are reading by cells, navigating by rows, reading by column, etc.

Conversational Web Browsing 7

• Form, i.e., input fields grouped together and accompanied by a sub-
mission button. Element-specific actions are telling which inputs are re-
quired, filling individual fields, confirming inputs, submitting, etc.

– Domain vocabulary: It is necessary to equip all intents in the website with
their domain-specific vocabulary. This can be achieved by accompanying
intents with labels and synonyms that can be used to generate combinations
of phrases and to train the application-specific bot [R3]. For instance, the
intent LatestPaper with the words “latest paper, recent paper” or similar.

– Intent description: Intent descriptions are simple textual explanations
that the bot can use to tell the user which intents a given page supports.
For instance, the LatestPaper intent could be described using the words “tell
you about the last paper published by the project” [R1].

Given a website, it is important to note how the sensible selection of which
HTML construct to annotate and how to connect them with conversational
links allows the developer to construct pre-defined dialog flows guiding the
user through the content and functionalities published by a website [R5].

Annotation format. Annotating a website now means associating conversa-
tional knowledge (knowledge about how to generate a conversational agent)
with specific HTML constructs in a page. The cues for the generation of the
agent come in the form of HTML attributes and developer-provided values. In-
formed by the conceptual model, the concrete attributes for the generation of
application-specific bots are highlighted in Figure 3. The figure provides a
practical example of the use of these attributes, and the use of one element-
specific attribute: bot-attribute, which identifies element-specific content types
that the respective element-specific bot can understand. While some annota-
tions may seem redundant (e.g., can be derived from HTML tags), developers
not always follow the semantics of HTML tags. For instance, one of the most
used tags today is the <div> tag, which lacks semantics. Explicit annotations
can also allow developers indicate what elements to expose to the chatbot.

As research progresses, we intend to maintain an up-to-date version of the
annotation format on GitHub and to improve it with the help from the com-
munity. Please refer to https://github.com/floriandanielit/conversationalweb.

5 Generating Application-Specific Conversational Agent

The generation process can be divided into two phases: (i) the generation of
the application-specific training data and the training of the NLU (natural lan-
guage understanding), and (ii) the generation of a suitable conversational context
model to enable the bot manager to manage the dialog. The generation of the
application-specific training data follows the steps highlighted in Figure 1 using
circled numbers: the headless browser loads the current page of the website and
builds its DOM Ê, the parser and generator extracts intent identifiers and the
list of intent synonyms Ë and generates a dataset of utterances for training Ì;
the NLU uses the dataset to learn intents and application-specific vocabulary Í.

https://github.com/floriandanielit/conversationalweb

8 P. Chittò et al.

Home |

<a bot-intent="progress"
bot-desc="Tell you the phases of the project"
bot-type="link" bot-keys="phases, steps, progress"
href="project.html?">Project progress |

<a bot-intent="about"
bot-desc="Tell you about the researchers involved"
bot-type="link" bot-keys="researchers, authors"
href=“about.html">About us

<di! bot-intent="lastest_paper"
bot-desc="Tell you information about the paper"
bot-keys="lastest paper, last paper, paper">

<h">#atest paper</h">
<di! bot-intent="paper_info_title" bot-type="reader"

bot-desc="Tell you the title of the paper"
bot-keys="title">

<h$ bot-attribute="title">%itle of paper</h$>
<p bot-attribute="paragraph">

Automatic &eneration of 'hatbots for 'on!...
</p>

</di!>

<di! bot-intent="paper_info_topics" bot-type="reader"
bot-desc="Tell you the topics of the paper"
bot-keys="topics">

<h$ bot-attribute="title">%opics</h$>
<p bot-attribute="paragraph">

(on)!isual bro*sing+ con!ersational agents+...
</p>

</di!>...

About

LatestPaper
(hierarchicall	

�r�c��re�

Title

Topics

Element-
specific

annotations
for �e�t

�ea�er �ot

�pplication-
specific
annotation

• bot-intent: associates a
page-wide unique intent
identifier to the HTML
construct holding it.

• bot-desc: provides a text
explanation that the bot can
use to inform the user about
the meaning of the intent.

• bot-keys: specifies a
comma-separated list of
synonyms as alternative
names of the intent.

• bot-type: specifies the type
of element-specific bot to
use to process the HTML
construct's internal HTML
markup (e.g., Text Reader).

Fig. 3: Simplified code excerpt of the <body> of the Home page in Figure 2 with
annotations for conversational browsing. Application-specific annotations enable
navigation and content access; element-specific ones instruct the Text Reader.

The conversational context model is generated by the parser and generator
once the NLU is successfully trained. It consists in a tree representation5 of the
intents contained in the current page: CT = 〈N,C〉, where N is the set of
nodes, where each node represents one application-specific intent in the page,
and C = N ×N represents the set of non-cyclic, directed child relationships of
the tree. Each node n ∈ N,n = 〈intent, type, desc, keys, elem, link〉 contains the
identifier, type, description and keywords of the respective intent, the HTML
element it is associated with, and the possible conversational link in case the
intent is a link intent. The root node r ∈ N represents the information intent
associated with the <body> element of the current page. Intermediate nodes
represent access intents with sub-intents; leaf nodes (nodes without children)
represent intents to be processed using a given type of element-specific bot.

The bot manager now uses the so constructed context model to decide which
bot to choose to advance the conversation with the user. The proposed policy
works as follows: as the user provides input, the bot manager checks if the last
used bot (the current bot) is able to understand the input, i.e., if it is able to
identify an intent with a confidence that exceeds a given threshold τ . If yes, the
respective answer is forwarded to the user, otherwise it forwards the input to all
direct children of the current bot, and recursively to the sub-children if none is
successful. If any of them is able to identify an intent with sufficient confidence,
that bot becomes the new current bot and its answer is forwarded to the user.
If the current bot corresponds to a leaf node and is not able to understand the

5 The tree is a result of the hierarchical organization enabled by selection intents, e.g.,
LatestPaper→Title(Text Reader)

Conversational Web Browsing 9

user input, it escalates the input to upper levels until there is a higher-level bot
able to understand the input or the escalation reaches the root node. If none is
able understand the input, the user is asked to reformulate his/her request.

6 System Implementation and Technical Validation

The conversational browsing infrastructure outlined in Figure 1 has been imple-
mented making use of ready technologies: Alexa Voice Service for voice to text
conversion, Rasa NLU (https://rasa.com/) for natural language understanding,
Selenium (https://selenium.dev/) as headless browser integrated with Mozilla
Firefox, and Chatito (https://github.com/rodrigopivi/Chatito) for the gener-
ation of training data. Custom integration and chatbot code were written in
Python. For the tests with Alexa, the infrastructure was deployed on Heroku.

While the training phase of the chatbot could be done once of the entire
site, in our current prototype we opted for a page-by-page training, in order to
support dynamically generated pages. As the focus of the prototype was techni-
cal feasibility, it is not yet optimized for performance. However, tests on a local
machine (Omen by HP 15-DH0, Intel Core i7, 16 GB of RAM, SSD hard-drive,
Win10 64bit) show that page loading and rendering, training data generation
and bot training requires up to few seconds, an acceptable performance for some
scenarios. Fetching pages from the Web adds an additional overhead. The con-
struction of the context model is negligible in terms of execution time.

The element-specific bots of the prototype are custom Rasa bots with pre-
defined intents, actions and NLU models. Demo videos illustrating the compo-
nents of the approach can be found at https://bit.ly/2OckzZW.

7 Related Work

The problem of non visual web browsing has produced two main approaches:
markup-based approaches such as VoiceXML [10] and voice-enabled screen read-
ers integrated into web browsers [1]. VoiceXML [10] is a W3C markup language
for voice applications typically accessed using a phone. Applications are stand
alone and could complement websites, but there is no native integration of the
two. Voice-based screen readers (e.g., [1]) aim at lowering the complexity of
managing shortcuts in navigating with screen readers, enabling users to utter
browsing commands in natural language (“press the cart button”). While valu-
able, these approaches were developed to support desktop web browsing: they
require users to be aware of the layout of the pages and perform low-level, step-
by-step interactions, or to create macros to automate tasks.

As for chatbot development, general platforms and tools support the de-
velopment of stand-alone chatbots (e.g., DialogFlow, Instabot.io). Another ap-
proach is that of deriving chatbots directly from database schemas, API defini-
tions and web content. Prominent works in this regard are the ones by Castaldo
et al. [5] exploring the idea of conversational data exploration, by inferring a
chatbot directly from annotated database schema; Yaghoub-Zadeh-Fard et al.

https://rasa.com/
https://selenium.dev/
https://github.com/rodrigopivi/Chatito
https://bit.ly/2OckzZW

10 P. Chittò et al.

[13] generating a conversational interface directly from API specifications (e.g.,
OpenAPI). Website content has also been used for chatbot generation. Popular
in e-commerce and CRM, approaches such as SuperAgent [7] can generate con-
versational FAQ based on the content to visitors directly on the website. Ripa
et al. [12] focus on making informational queries over content intensive websites
accessible via voice-based interfaces (e.g., smart speakers), relying on augmen-
tations provided by end-users. While all these works illustrate the diversity of
approaches, they require either (bot) programming knowledge (and effort), are
constrained by an application domain, or are limited to Q&A.

8 Conclusion and Outlook

This paper contributes with abstractions, techniques and conceptual vocabu-
lary for superimposing conversational bots over websites. These contributions
along with the software infrastructure enable the (semi)automatic generation of
chatbots directly from websites, and can be leveraged by authoring tools to en-
able developers, even without chatbot skills, to obtain chatbots effectively and
efficiently. The solution presented is a proof-of-concept implementation not op-
timized for large applications, and thus presents points for improvement that
are the focus of our ongoing work. As a next step, we will out user studies with
different types of target users (end users and developers) and derive guidelines
for conversational browsing. We are also already studying how to use machine
learning and AI along with existing Web technical specifications (e.g., HTML5)
to replace some explicit annotations by automatic recognition.

References

1. Ashok, V., Borodin, Y., Puzis, Y., Ramakrishnan, I.: Capti-speak: a speech-enabled
web screen reader. In: W4A. p. 22. ACM (2015)

2. Baez, M., Daniel, F., Casati, F.: Conversational web interaction: Proposal of a
dialog-based natural language interaction paradigm for the web. In: Chatbot Re-
search and Design. pp. 94–110. Springer (2020)

3. Baez, M., Daniel, F., Casati, F., Benatallah, B.: Chatbot integration in few pat-
terns. IEEE Internet Computing (2020)

4. Brambilla, M., Fraternali, P., et al.: The interaction flow modeling language (ifml),
version 1.0. Tech. rep., OMG, http://www.ifml.org (2014)

5. Castaldo, N., Daniel, F., Matera, M., Zaccaria, V.: Conversational data explo-
ration. In: ICWE. pp. 490–497. Springer (2019)

6. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann (2002)

7. Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., Zhou, M.: Superagent: A customer
service chatbot for e-commerce websites. In: ACL 2017. pp. 97–102 (2017)

8. Jurafsky, D., Martin, J.H.: Dialog systems and chatbots. Speech and language
processing 3 (2017)

9. Kowalski, J., Jaskulska, A., Skorupska, K., Abramczuk, K., Biele, C., Kopeć, W.,
Marasek, K.: Older adults and voice interaction: a pilot study with google home.
In: CHI 2019 Extended Abstracts. pp. 1–6 (2019)

Conversational Web Browsing 11

10. Oshry, M., Auburn, R., Baggia, P., Bodell, M., Burke, D., Burnett, D., et al.: Voice
extensible markup language (voicexml) 2.1. w3c recommendation (2007)

11. Pradhan, A., Mehta, K., Findlater, L.: ” accessibility came by accident” use of
voice-controlled intelligent personal assistants by people with disabilities. In: CHI
2018. pp. 1–13 (2018)

12. Ripa, G., Torre, M., Firmenich, S., Rossi, G.: End-user development of voice user
interfaces based on web content. In: IS-EUD 2019. pp. 34–50. Springer (2019)

13. Yaghoub-Zadeh-Fard, M.A., Zamanirad, S., Benatallah, B., Casati, F.: Rest2bot:
Bridging the gap between bot platforms and rest apis. In: Companion Proceedings
of the Web Conference 2020. pp. 245–248 (2020)

	Automatic Generation of Chatbots for Conversational Web Browsing

