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ABSTRACT
This paper explores and offers guidance on a specific and relevant
problem in task design for crowdsourcing: how to formulate a
complex question used to classify a set of items. In micro-task
markets, classification is still among the most popular tasks. We
situate our work in the context of information retrieval and multi-
predicate classification, i.e., classifying a set of items based on a
set of conditions. Our experiments cover a wide range of tasks and
domains, and also consider crowdworkers alone and in tandemwith
machine learning classifiers. We provide empirical evidence into
how the resulting classification performance is affected by different
predicate formulation strategies, emphasizing the importance of
predicate formulation as a task design dimension in crowdsourcing.
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1 BACKGROUND & MOTIVATION
Micro-task crowdsourcing today is still an art. Indeed, it is not
surprising that companies charge hefty consulting fees to help
businesses set up and run crowdsourcing tasks. Successful projects
involve designing and harmonizing several aspects, from designing
the user experience to task design, training and test settings, and
to seemingly easy problems such as how to ask questions and
elicit truthful, accurate answers [12] — all while meeting budget
constraints and treating your workforce fairly and with respect.
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For example, longer instructions affect the task uptake by work-
ers by three times, while showing concrete solution examples im-
prove accuracy up to ten times [51], depending on the type of task.
Mechanisms to combat task spammers are often essential, since
without them a task can easily get half of the answer as invalid
even on simple tasks, although it raises the contributors’ efforts
(and cost) [26]. Budget is also a limiting factor, and reward strate-
gies and optimization can also affect the results [2, 20, 29, 47]. The
list is almost endless, so much that it is motivating crowdsourcing
researchers to prepare design and reporting guidelines for crowd
experiments [39].

This paper explores and provides guidance on a specific but im-
portant aspect of crowdsourcing task design: how to ask "complex"
questions to the crowd to classify items. Classification in general
is by far the most popular type of crowdsourcing tasks1. In this
paper we study classification in the context of information retrieval
and multi-predicate classification problems, that is, tasks where
the crowd has to select items that meet a set of conditions. The
"complexity" of the question comes therefore from the fact that it is
composite, and we want our crowd worker to state if items satisfy
our set of conditions (predicates). This is a very common task we
do implicitly or explicitly countless of times in our daily life and
that often appears in crowd tasks as well (from selecting hotels that
have certain characteristics of interest [10] to screening papers for
systematic literature reviews [47]). Indeed, any conjunctive query is
an instance of such problem and abundant prior research on crowd
query processing studied how to efficiently retrieve items from a
potentially large set [5, 16, 34].

We tackle this problem because it is common enough to be of
widespread interest and nuanced enough (as we show in this paper)
to require a detailed investigation, and it can be framed so that it
can result in reusable knowledge for task designers. In particular,
we set to study the following research question:

How does the way we ask a composite question impacts the indi-
vidual and aggregate performance of crowd workers?

We investigate the question both in the context of crowd-only
classification and in hybrid classification, an increasingly common
approach where humans and machines work together to solve
a classification problem. We analyze the problem based on both
characteristics of the question and of the task, such as task "length"
(e.g., length of the document to read for text classification tasks),
task domain, task difficulty, and class balance.

1A relatively recent worker survey on Appen, previously Figure Eight, shows that
45% of jobs are classification tasks [23]. Also, 60% of the builtin templates offered by
Amazon Mechanical Turk constitute classification tasks, and 40% in Yandex Toloka.
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Surprisingly, the crowdsourcing literature somewhat overlooked
predicate complexity in classification tasks. First, complex predi-
cates may require longer task instructions, which is known to cor-
relate positively with the perceived complexity (as seen by workers
[53]), impact task intake (most workers tend to quit after inspecting
the instructions [15]), and, therefore, the latency. Second, increased
task complexity naturally demands more effort from workers, chal-
lenging accurate and fair compensation [50]. Last, task complexity
plays an important role in the quality of the results obtained [14, 28].

The main contributions of this work are as follows. We introduce
the problem of predicate formulation for crowd classification tasks
as a relevant design dimension (to enhancing worker performance
and enabling Human-AI collaboration). We study complexity in
classification problems on a broad landscape of tasks considering
categorization and classification, verification, content moderation,
and sentiment analysis tasks (see [23] for a taxonomy of task types
in crowdsourcing). Our experiments, therefore, cover multiple do-
mains and leverages human and machine classifiers. We provide
empirical evidence on the impact of predicate formulation on clas-
sification outcomes, suggesting performance gains when querying
complex predicates as multiple simpler questions. We also provide
insights into the expected performance of different formulation
strategies under different i) problem settings such as predicate se-
lectivity and class distribution, and ii) task design choices such
as querying predicates on the same or separate tasks. The experi-
ments also offer preliminary evidence on the potential of predicate
formulation in the context of hybrid classification, suggesting per-
formance gains even in its simplest collaborative approach, by
assigning crowd and machines parts of a complex predicate they
are more suited to classify. Last but not least, we contribute datasets
derived from our experiments2.

2 RELATEDWORK
Task design in crowdsourcing
Task design is a multi-dimensional problem with a rich body of
work in the crowdsourcing literature [6]. "Design" does not only
mean the actual task interface, but also the mechanisms to deploy,
coordinate, and assign tasks to workers, the tools to assure high-
quality contributions, and budget management [12]. The lessons
learned from this literature spawn on best practices for designing
effective tasks (given the impact task design has on the resulting
performance), and methods for performing crowdsourcing studies.

Crowdsourcing results are sensitive to subtle changes in task
design. Poor instructions may lead workers to misinterpret the task
and produce subpar responses [51]. The clarity of the task [24] and
how it is framed (whether meaningfully or not) [1] may also swing
workers’ performance. The prevalence of malicious workers in plat-
forms asks for design decisions that account for this and guard
quality (e.g., equip tasks with mechanisms to combat spammers
[26]). Similarly, task design could aid worker performance, in the
form of assistance to workers [38, 45], proper compensation for
effort-intensive tasks [8], or by rigorous training protocols [7] and
feedback loops [19]. Latency also matters and can be affected by in-
effective instructions causing task abandonment [15] or generating

2https://github.com/TrentoCrowdAI/simpler-predicates

mistrust in task requesters [27]. However, fair compensation can
help to speed up task intake and how much workers contribute [8].

These lessons provided valuable insight into properly designing
and running crowdsourcing studies. As design choices may swing
the results obtained, it can also affect the validity of experimental
outcomes [26]. Choices in task design can amplify biases inherent to
crowdsourcing environments. Task clarity influences how workers
pick tasks and, therefore, introduce selection effects [24]. The active
pool of workers varies as hours go by [9], and with this, different
decisions affecting when a crowdsourcing job runs could result
in unanticipated performance differences and confounding factors
[36]. The lack of built-in support from crowdsourcing platforms
makes it difficult to run controlled experiments, making simple
between-subjects design a challenging endeavor [26]. A common
approach involves identifying workers via browser fingerprinting
[22] and then using an external server to randomize participants
to experimental conditions [38]. These challenges motivated the
research community towards developing guidelines for designing
and reporting crowdsourcing experiments [35, 39].

Multi-predicate classification
We study predicate formulation in the context of problems regarded
as finite pool classification [33], where we have a finite set of items
to classify according to a set of criteria (potentially) unique to the
problem. Systematic literature reviews are one instance of this prob-
lem, and have been heavily-studied in the crowdsourcing literature
[11, 32, 46, 48]. Mortensen and colleagues [32] tested the feasibility
of leveraging crowdsourcing, given the costs associated with pro-
ducing SLRs [47]. They found that task design plays a major role in
the quality of the results, as well as this can vary from predicate to
predicate. Krivoshev et al. [11] proposed models and algorithms to
crowdsource SLRs, offering quality and budget trade-offs to guide
how to invest in the crowdsourcing tasks. Budget limits entire
crowdsourced solutions, works have also focused on leveraging
machine classifiers in tandem with crowd workers [29, 47]. For
example, leveraging strategies such as classifying “easy” items first
with ML and crowd for the rest [47] or modeling tasks and workers
to determine promising predicates to filter out items.

Multi-predicate classification is also studied in the context of in-
formation retrieval. A common problem is to determine an optimal
order of the predicates (to query the crowd for labels) to filter out
tuples [5, 10, 42, 49]. Similarly, work in crowd-powered databases
studied how to leverage crowdsourcing to extend the capabilities of
database systems to answer complex multipart queries over flexible
(or on-demand) schemas [16, 34].

Despite the vast body of work on task design and on information
retrieval / multi-predicate classification, to the best of our knowl-
edge, we are the first to study the impact on how the (complex)
information retrieval question is formulated, a dimension that af-
fects all of the prior art. Our experiments, over an ample range of
tasks, emphasize the importance of the predicate formulation as a
problem, and show its impact on classification outcomes.

3 PROBLEM AND APPROACH
We now define and scope the crowdsourced classification problem,
and in Section 5, we introduce the crowd-machine variant.
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The task we seek crowd help for is to identify all items in a set
𝐼 that meet a complex predicate P, defined as the conjunction of
predicates {𝑝1, 𝑝2, . . . , 𝑝𝑛}. For example, taking a common problem
from the literature (screening scientific papers [11, 47]) , 𝐼 could be
a set of scientific articles returned by a keyword-based query on
Scopus, and we may seek papers reporting experiments on older
adults living in Africa (P = 𝑝1 ∧ 𝑝2, where 𝑝1: “Is the study popu-
lation 65+ years?" and 𝑝2: “Is the population living in Africa?"). To
solve this problem, we have to our disposal a set of crowd workers
𝑊 , a budget 𝐵, and a quality goal (or loss function) 𝐿 to meet.

The predicate formulation problem seeks to determine how to
ask the question in the context of multi-predicate classification.
There are different ways to formulate a complex predicate, and,
in this paper, we study specifically three ways: i) ask the complex
question (e.g., “Is the study on 65+ years old adults living in Africa?"),
ii) break the composite question into component predicates, but
ask them as part of the same task, and iii) make each predicate a
task of its own (which also means that a crowd worker only sees
one predicates and assesses many items for it).

We approach this problem systematically, considering both char-
acteristics of the question and tasks. To give breadth to our analysis,
we explore a broad landscape of tasks (categorization and classi-
fication, verification, content moderation, and sentiment analysis
tasks) representing different domains and task difficulty levels. We
focus our experiments on document retrieval (text classification)
and consider documents of different lengths, given the associated
effort incurred on workers to (understand and) assess text, and
the potential influence of the documents’ length on performance
[14, 38]. Our focus on text stems from the fact that it is a recurrent
use case in the literature [8, 11, 45], and annotating images are
deemed simpler in comparison to annotating texts [28]. Finally,
crowdsourcing tasks are prone to worker biases [21], which could
be caused by frequently assigning items to the same class. There-
fore, we consider different class distribution scenarios to study the
predicate formulation problem in crowdsourcing contexts.

4 CROWDSOURCING EXPERIMENT
This experiment studies the impact of the task design alternatives
on the performance of crowd workers. We focus on the simpler
case where a complex predicate is composed of two simpler ones.
We show the individual and collective performance gains related
to predicate reformulation, and how the nature of the problem
influences the resulting performance.
Datasets. We considered datasets with different characteristics in
terms of domain, predicates, document length, and difficulty (clas-
sification accuracy), in line with prior art [29, 38]. The datasets
come from systematic literature reviews (SLRs), customer feedback
analysis, content moderation and crowd verification, and are repre-
sentative of multi-predicate screening problems from the literature
[29, 37, 52]. See the supplementary material3 for details on the
predicate composition for each of the reference datasets.

Virtual reality exergames. This dataset was produced and
annotated by the authors as part of their investigation into overlaps
between SLRs. We identified a pool of 80𝐾+ scientific articles from
multiple SLRs that share some predicates. From this pool of papers,
3https://tinyurl.com/simpler-predicates-supp

we built the Exergame-VR dataset that consists of 500 articles from
4 SLRs with high overlap in terms of predicates and papers within
their scope. Additionally, we split the documents into two buckets
based on their length: short (150 items with length ≤ 230 words)
and long (350 items with length > 230 words).

Amazon product reviews. This dataset contains 100k reviews
of products that are sold in Amazon [29]. It is labeled according
to the following two predicates: 1. Book: “Is it a book review?", and
2. Negative: “Is it a negative review?". We randomly selected 236
reviews (118 short, and 118 long) to create the AMZ-reviews dataset.

Wikipedia detox. This dataset from Wulczyn et al. [52] con-
tains 100k comments from “Talk pages" in Wikipedia, labeled by
crowd workers on whether each of the comments contains a per-
sonal attack (or an attack of another kind). From this pool of 100k
items, we built Content-Moderation, a dataset of 118 long documents
(comments with > 230 words) labeled on two predicates.

Verifying crowd contributions. In [37], the authors contribute
datasets where workers provided a binary label to a relevance ques-
tion, and a highlighted excerpt to justify the labeling. We built the
Verification dataset based on [37], selecting 118 long documents la-
beled according to predicates that determine whether the judgment
and highlighted passage are correct. These tasks are relevant to
iterative workflows, where workers act as reviewers [13].

Economic inequalities in older adults. This dataset is part
of an ongoing SLR on assessing the inequalities in older adults. It
contains 2619 papers. From this pool of documents, we selected and
labeled 151 items to build Inequality-OA, a dataset of long abstracts.

Design. The task performed byworkers in our experiment consisted
of reading a piece of text and answering one or two binary questions
of different complexity levels depending on the task design. Figure
1 shows an example of a task (inspired by prior art [11, 41]).

We selected 118 items per dataset, reserving 18 for training work-
ers (training items), and 100 for the actual task, where 34 of these
items were used for quality control (control items). We consider
two scenarios for the class distribution in these datasets: 60-40 and
80-20. In the 60-40 case, we selected items in each dataset according
to a distribution of roughly 40% included (IN ), 60% excluded (OUT ).
Included means that the documents satisfy all predicates 𝑝 𝑗 ∈ P for
a given dataset (i.e., documents have a value of 1 for the predicates
that constitute P). Excluded documents are those that satisfy only
one of the predicates or none of them. The excluded documents we
distributed equally, whenever possible, between the three exclusion
cases4. As the name suggests, the 80-20 case represents a setting
with roughly 20% of items included and 80% excluded. This skewed
setting tends to be problematic in crowdsourcing since it may bias
workers towards the most frequent answer [21]. For this reason,
and quality control purposes, the training and control items follows
a 30 IN and 70 OUT distribution, making sure that each page of
work shows items from both classes.

We consider four experimental conditions for our crowdsourcing
experiments, each condition represents a variation of the task inter-
face shown in Figure 1. The baseline conditionwe use as control, and
it asks workers a complex predicate P (a question that integrates

4Representing the two predicates in each dataset as 𝑝1 and 𝑝2 , the three exclusion
cases are 1) 𝑝1 = 1, 𝑝2 = 0; 2) 𝑝1 = 0, 𝑝2 = 1; 3) 𝑝1 = 0, 𝑝2 = 0.
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instructions cropped to save space

Figure 1:The task interface used in the crowdsourcing experiments.
The interface shows the complex predicate P = 𝑝1 ∧ 𝑝2 for the
Exergame-VR dataset, with 𝑝1: “Does the paper describe a study that
uses an exergame?", and 𝑝2: “Does the paper describe a study that
uses virtual reality for physical training?".

both predicates in a dataset, as indicated in 1). The 𝑃1-𝑃2 condi-
tion represents the task alternative that asks the constituents of
P on the same task. The conditions 𝑃1 and 𝑃2 represent tasks that
asks workers only one simpler predicate (predicates 𝑝1 and 𝑝2,
respectively).

Initially, we considered both short and long documents. How-
ever, in a pilot study, we observed that the task alternatives did
not improve over the baseline when considering short documents,
suggesting that these may be more suitable for tasks where workers
face longer documents [38, 45]. Therefore, we consider only long
documents in our study.

We followed a between-subject design, assigning workers to one
of the four experimental conditions. Workers judged a maximum of
18 documents that we divided into 6 pages of 3 items per page (6×3
design), and we only allowed workers that understand English. We
required workers to perform a training task (one page of work)
before advancing to the main task, a quality control mechanism
typically done in crowdsourcing research [31]. Workers that scored
100% advanced to the main task, where we included control items as
an additional quality assurance mechanism.We required workers to
maintain an accuracy level of 100% for the AMZ-reviews dataset and
76% for the rest of the datasets5. We paid workers between $0.09 and
$0.21 per page of work (depending on the condition and dataset),
aiming at an hourly rate of 7.5USD.We collected contributions from
workers on the Yandex Toloka platform6, asking 3 votes per item
in the datasets. We defined a timeframe from 14:00 to 21:00 GMT+1
5Prior art [29] shows that the baseline performance was quite high for AMZ-reviews;
therefore, we defined the 100% quality threshold for this dataset.
6https://toloka.yandex.com/

for running the experiment, running each dataset separately with
a time gap between these. We executed each of the experimental
conditions in parallel and balanced the contributions from each
geographical bucket (~33% per bucket within each condition).

We inspected the demographics of Toloka and noticed that roughly
90% of workers come from Russian-speaking countries, where Rus-
sia and Ukraine contribute the majority of the workers (∼79% and
∼10% respectively). Besides only allowing workers that understand
English, we decided to create 3 geographic buckets: Russia, Ukraine,
and the “Rest of the world", balancing the contributions from these
buckets in our experiments to avoid any bias due to demographics.

We used an external server to assign workers to experimen-
tal conditions in a round-robin fashion, blocking workers from
jumping between conditions (to avoid learning effect). We added
a custom JavaScript code to the task interface to call the external
server and render the experimental condition accordingly [40].

4.1 Results
We collected a total of 8250 judgments from 1185 workers across
the datasets we considered in this experiment. Here we describe
our results to determine the impact of asking the complex predi-
cate P vs. leveraging its simpler constituents on the classification
performance of crowd workers.
Worker accuracy
Weuse the ground-truth labels available in the datasets to determine
the classification accuracy of workers in each of the experimental
conditions. The median accuracy of workers in the baseline was
0.89 for AMZ-reviews and 0.67 for the rest (Exergame-VR, Content-
moderation, Verification, and Inequality-OA), it would seem that
workers found it easier to judge product reviews than documents
from the rest of the domains.

We test the significance of the difference in worker accuracy
using the Kruskal-Wallis H test7. The test indicates that there is
a significant difference between the experimental conditions in
4 out of 5 datasets (𝑝 < 0.05 for Exergame-VR, and 𝑝 < 0.01
for the rest). The results are depicted in Figure 2. We analyze all
possible pairwise comparisons using the Dunn’s Test of Multiple
Comparisons [4], using Benjamini-Hochberg correction to reduce
the probability of Type I error. It can be noted that either 𝑃1 or 𝑃2
has a significant improvement over the baseline (3 out of 5 datasets).
And that the 𝑃1-𝑃2 condition significantly outperforms the baseline
in the Content-moderation and Inequality-OA datasets.

In the skewed class distribution scenario, the 80-20 case, the
median worker accuracy in the baseline condition was 0.67 for
both Exergame-VR and Inequality-OA (figure omitted due to space
limitations). The Kruskal-Wallis test shows no significant results
between the experimental conditions (though, there is an interest-
ing advantage of the 𝑃1-𝑃2 condition where the median worker
accuracy was 0.83 in both datasets).

For our predicate formulation problem, these results suggest
that by asking simpler predicates instead of a complex question,
we are likely to see an increase in worker accuracy in at least one
of the simpler predicate. Furthermore, by asking more granular
and simpler predicates we obtain valuable detailed information
about crowd and task characteristics. For example, according to our
7In our pilot study, we noticed that the observations do not follow a normal distribution
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Figure 2:Worker accuracy by experimental condition for the 60-40
case. The lines indicate significant differences, coding p-values as *:
𝑝 ≤ 0.05, **: 𝑝 ≤ 0.01, ***: 𝑝 ≤ 0.001, ****: 𝑝 ≤ 0.0001.

results, workers were better at evaluating if a review was about a
book than whether it was a negative review (simple verification
vs. sentiment analysis tasks), suggesting different difficulty levels.
This detailed information could equip crowd-machine algorithms
to make better decisions about what to crowdsource and what to
automate.
Classification performance
We analyze the results from a collective perspective and evaluate
the impact of predicate formulation in the resulting classification.

The overall classification, for a givenP = {𝑝1, 𝑝2} in our datasets,
is derived from the conjunction of the aggregated results from each
of the simpler predicates (i.e., 𝑝1 ∧ 𝑝2 for each item 𝑖 ∈ 𝐼 ). We
use majority voting to aggregate the contributions from multiple
workers and the 𝐹1 score to assess the classification quality. The
baseline condition already provides classification on P since the
simpler predicates are combined in a single question, and for the
𝑃1-𝑃2 condition we simply take the conjunction of {𝑝1, 𝑝2}. To
make the results from 𝑃1 and 𝑃2 comparable to previous conditions,
we introduce 𝑃1 & 𝑃2, which also takes the conjunction of each
simpler predicate. To compute the 𝐹1 score for these conditions we
use as ground-truth label the conjunction of the simpler predicates.

Table 1 summarizes the classification performance for the exper-
imental conditions across our five datasets for both 60-40 and 80-20
cases. The baseline performance ranges between 0.6 (Exergame-VR)
and 0.909 (AMZ-reviews).

We compared the performance of askingP directly vs. asking the
simpler predicates first and then combining the results (𝑃1-𝑃2 and
𝑃1 & 𝑃2). It can be observed that the conditions 𝑃1-𝑃2 and 𝑃1 & 𝑃2,
outperformed the baseline condition but not consistently across
all datasets. 𝑃1-𝑃2 outperformed the baseline in 3 out 5 datasets
(Content-moderation, Verification, and Inequality-OA), with an
increase in performance of up to 18%. 𝑃1 & 𝑃2 improved over the
baseline in 2 out 5 datasets, with an increase of up to 9%. In the

80-20 case, the 𝑃1-𝑃2 condition showed superior performance when
compared to the baseline, with an increase of up to 27% (while the
𝑃1 & 𝑃2 fell behind the baseline).

We also compared the simpler predicates against the complex
one. We observed superior classification results when formulating
a composite predicate as multiple (more straightforward) questions
leveraged on the same or separate tasks, even when votes are ag-
gregated with simple majority voting. Asking two simple questions
on the same task (the 𝑃1-𝑃2 condition) resulted in performance
gains ranging from 6% to 48%. And the conditions 𝑃1 and 𝑃2 that
asked a simple question surpassed the baseline performance in all
datasets, with an increase in 𝐹1 score ranging from 2% and up to
47% In the 80-20 case the 𝐹1 scores in the baseline were 0.571 for
Exergame-VR, and 0.476 for Inequality-OA. In both datasets, task
formulating simple predicates outperformed complex ones (when
delivered separately or together on the same task), with an increase
in classification performance of up to 97%.

A closer look into the performance on the complex predicates
(baseline condition) across the two class distribution scenarios
showed that overly skewed datasets may hurt the classification
performance of the crowd — 𝐹1 decreased 4% for Exergame-VR, and
31% for Inequality-OA. While by leveraging simple predicates, the
classification performance could remain roughly the same, except
for the unusual case of 𝑃1 for Inequality-OA, where the perfor-
mance decreased 20%. We believe the selectivity of 𝑃1 (see our
supplementary material) played a role in this drop in performance
since it is equal to 0.44 in the 60-40 version of Inequality-OA and
0.20 in the more skewed variant (also observed in the baseline).

In summary, there is evidence suggesting that complex multipart
questions may benefit from disentanglement into simpler elements.
As we observed, performance boosts can be obtained by formulating
and presenting complex predicates as simple and more granular
questions and combining back the results. However, there is no clear
pattern for when each task design alternative (presenting simple
predicates on the same- or separate tasks) will be the appropriate
one to implement, an interesting direction for future work.
Worker effort
Although our main focus in this paper is quality, we complement
our analysis by looking at the impact on worker effort. We consider
decision time as a proxy to estimate the effort incurred on workers.

The median decision time in the baseline condition was 22.66s
for Exergame-VR, 33.88s for AMZ-reviews, 30.77s for Content-
moderation, 23.38s for Verification, and 25.59s for Inequality-OA.
In the 80-20 datasets, the median decision time in the baseline con-
dition was 33.62s for Exergame-VR, and 33.05s for Inequality-OA.

While formulating complex predicates as simpler multipart ques-
tions offer gains in quality, it results in slower task completion
time. Workers in the 𝑃1-𝑃2 condition spent significantly more time
than the baseline in all datasets (𝑝 < .01), which intuitively makes
sense since workers answered two questions rather than one (the
decision time ranged between 36.77s and 53.56s). Likewise, the
𝑃1 & 𝑃2 condition was also significantly slower than the baseline
(𝑝 < .01, with decision time between 36.96s and 45.08s)8. Also,

8To approximate the decision time for 𝑃1 & 𝑃2 , we determine the median decision
time (per document) for conditions 𝑃1 and 𝑃2 separately. Then for each document, we
use the “slower" predicate as the decision time.
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Table 1: Classification performance (𝐹1 scores) by experimental condition from the crowdsourcing experiment.

Condition Exergame-VR Inequality-OA AMZ-reviews Wiki-detox Verification
Distribution 60-40 (80-20) 60-40 (80-20) 60-40 60-40 60-40

Baseline 0.600 (0.571) 0.691 (0.476) 0.909 0.697 0.674
P1 - P2 0.583 (0.696) 0.781 (0.606) 0.889 0.825 0.707
P1 & P2 0.656 (0.629) 0.698 (0.435) 0.947 0.642 0.619
P1 0.819 (0.817) 0.744 (0.595) 0.981 0.838 0.889
P2 0.881 (0.853) 0.887 (0.942) 0.926 0.719 0.776

there is no substantial evidence to suggest which task alternative
(𝑃1-𝑃2 or 𝑃1 & 𝑃2) is better in terms of effort. The conditions
𝑃1-𝑃2 and 𝑃1 & 𝑃2 had comparable results in 3 out of 5 datasets
(𝑝 > .05), and 𝑃1 & 𝑃2 outperformed on the rest (𝑝 < .05).

Looking closer into the performance, we noticed that simpler
predicates (when viewed in isolation) could potentially be faster
than asking a complex predicate, but not always. When comparing
𝑃1 and 𝑃2 to the baseline, we noticed two competing observations.
One of the simpler predicates was significantly faster than the base-
line in some cases (40% faster for AMZ-reviews, 27% for Content-
moderation, and 56% Verification) while significantly slower in
some others (20% slower for AMZ-reviews, 55% for Verification,
and 32% Inequality-OA). A similar result can also be observed in the
80-20 scenario. This suggests worker strategies such as short-circuit
evaluation or focusing on simpler criteria when evaluating complex
predicates, but the behavior requires further exploration.

To complement our analysis, we also explore how the predi-
cate formulation may have influenced task intake. Overall, the
percentage of workers who quit after a quick inspection of the task
(during training) ranged between 18% and 73%. In particular, the
task abandonment in the 𝑃1-𝑃2 condition ranged between 50% and
73% (somewhat expected given that workers faced the same amount
of instructions as in the baseline and had to answer two questions
rather than one). Across all datasets, either 𝑃1 or 𝑃2 obtained the
highest task intake, aligning with the observation from the previous
paragraph. To aid task intake, as task designers, we may seek to
formulate a complex predicate as multiple (focused and simpler)
questions and query them in isolation. Also, the instructions length
should be kept in mind, in the 𝑃1 and 𝑃2 conditions our instructions
were between 21% and 55% shorter than the baseline and 𝑃1-𝑃2 .
However, this suggestion demands further research, and we find it
an interesting direction to explore.

Our results show that, as current literature suggests, there is a
trade-off between quality and time. Besides, formulating complex
predicates as multipart questions could also help identify which
predicates may be more effort-intensive. Please refer to our supple-
mentary material for a more detailed analysis.

4.2 Simulations
The high dimensionality of the problem makes it intractable to
crowdsource for every possible parameter value. Here, we rely on
simulations to assess how the performance of workers could vary
under different parameterizations of the problem.

Conditions. The baseline task asks the complex predicate P
directly, the same-task alternative queries the simpler predicates

{𝑝1, . . . , 𝑝𝑛} in one task (i.e., a worker answers 𝑛 questions), and
separate-tasks delivers these predicates on different tasks (i.e., a
worker answers one of the 𝑝 𝑗 predicates). We use the terms condi-
tions, cases and task alternatives, interchangeably.

Parameters & Metric. We parameterize the simulations based
on 1) the number of simpler predicates 𝑛 that constitute P, 2) the
selectivity 𝑠 𝑗 for predicates 𝑝 𝑗 ∈ P, 3) the accuracy of workers
drawn from a Beta distribution with mean 𝜇 and variance 𝜎2, 4)
the budget 𝑏 controlling the number of votes per item, and 5) the
penalty 𝛾 that impacts the accuracy of the complex predicate P. To
assess different quality goals, we use 𝐹𝛽 , for several values of 𝛽 .

Worker accuracy. For a complex P, the separate-tasks condi-
tion defines a beta distribution for each predicate with expected
accuracy 𝜇 𝑗 for 𝑝 𝑗 ∈ P. The same-task condition defines a beta
distribution with accuracy 𝜇𝑠 = 1

𝑛

∑
𝑢 𝑗 . In contrast, the baseline

defines a beta distribution with expected accuracy 𝜇𝑏 but adjusted
based on the penalty 𝛾 .

We describe results for settings without penalty (𝛾 = 0) and
summarize the impact of 𝛾 at the end of this section, referring
readers to our supplementary materials for further details on our
parameterization and in-depth analysis.

Equal selectivity and accuracy. In this scenario, we define that
predicates have equal selectivity 𝑠 , and workers come from the
same distribution. Figure 3 depicts the results for 𝑛 = 2, 𝑠 = 0.5, and
for different expected accuracy values. It can be noticed than when
precision and recall weight equally (𝛽 = 1), there is a difference
between the task alternatives in favor of the baseline. However,
the gap decreases as the accuracy of workers increases (until the
conditions perform roughly the same). The same-task and separate-
tasks alternatives outperform the baseline when precision is more
relevant than recall (𝛽 = .1) and workers are better than random
(𝜇 ≥ 0.6). However, the conditions perform roughly the same when
we consider higher selectivity (𝑠 > 0.5). The baseline outperforms
the other alternatives when we value more recall (𝛽 = 10), and the
difference holds as we increase the accuracy and selectivity (except
for 𝑠 = 0.1, a extremely low selectivity with high variance).

Increasing the budget (number of votes) does not affect the re-
sults in low-accuracy settings. But when accuracy is high (𝜇 ≥ 0.7),
the differences narrow until the conditions perform roughly the
same. The number of predicates, however, harms the baseline per-
formance, making the same- and separate-tasks superior choices
for all settings.

These observations suggest that we may seek to formulate a
complex predicate as a single question if we aim to optimize recall
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and the number of simpler predicates 𝑛 is low, which intuitively
makes sense and aligns with current guidelines for multi-class
classification [17]. While if we aim for precision or face scenarios
with many predicates, we are better off by querying a complex
predicate via its constituents. However, in the following, we assess
more realistic settings (different selectivities and accuracies), and
see how asking the simpler questions is preferable over P.

Equal selectivity and accuracy

Figure 3: Classification performance for different accuracy values,
number of predicates 𝑛 = 2 and selectivity 𝑠 = 0.5.

Different selectivity and same accuracy. We assign different
selectivity values (either low or high) to the predicates, and we
assume the same expected accuracy for the individual predicates
𝑝 𝑗 . We first considered two predicates 𝑝1 and 𝑝2 and two scenarios
where the predicates have selectivities 1) 𝑠1 = 0.3 and 𝑠2 = 0.7; and
2) 𝑠1 = 0.7 and 𝑠2 = 0.3. We tested different accuracies 𝜇 ∈ [0.5, 0.9].

The results showed the same trend (figure omitted to save space)
as in the simulations where we set predicates with equal selectivity
and accuracy. Likewise, varying the number of predicates harmed
the baseline performance, and increasing the budget narrowed the
difference between the conditions when accuracy is high (until the
task alternatives performed roughly equal).
Different selectivity and accuracy. Here we consider predicates
with different selectivities and accuracies, a setting that aligns better
with what we observed in the real crowdsourcing experiment. First,
we simulated two predicates 𝑝1 and 𝑝2 with selectivity 𝑠1 and 𝑠2,
and expected accuracy 𝜇1 and 𝜇2, respectively (where 𝑠1 ≠ 𝑠2 and
𝜇1 ≠ 𝜇2). We considered selectivity values 𝑠 𝑗 ∈ {0.3, 0.7}, a fixed
accuracy 𝜇1 ∈ {.6, .9} and varied accuracy for 𝜇2 with 𝜇2 ∈ [0.6, 0.9].
We tested all combinations combinations of selectivity and accuracy.

Figure 4 shows the results for 𝛽 = 1 (more details in the supple-
mentary material). When we weight recall and precision equally,
we noticed a difference in performance in favor of the same- and
separate-tasks conditions (though less pronounced for 𝜇1 = .9). Like
in previous simulations, putting more weight to precision favors
the same- and separate-tasks conditions. As for 𝛽 ≥ 2, the same-
and separate-tasks condition also showed superior performance
for the settings where the first predicate had an accuracy 𝑢1 = 0.6.
In contrast, for high-accuracy settings, 𝑢2 = 0.9, the difference
between the baseline and separate-task conditions narrowed until
these performed roughly the same (both better than same-task).

We also considered the case of multiple predicates (𝑛 = 4) with
different accuracies and selectivities. Like in previous simulations,
a higher number of predicates hurts the baseline performance. In

Different selectivity and accuracy

Figure 4: Classification performance for predicates with different
selectivity and accuracy, 𝑛 = 2 and 𝛽 = 1.

this setting, the same- and separate-tasks conditions outperformed
the baseline across different values of budget 𝑏.
Summary. Our simulations without penalty showed how formulat-
ing a composite predicate as a single question is preferable for recall
if we consider a small number of predicates with equal selectivity
and accuracy. However, this is not always the case in real-world set-
tings, where we have many predicates with different accuracy and
selectivity. In these contexts, we noticed that formulating a complex
predicate P as multiple simpler questions showed superior perfor-
mance in general, which aligns with our real-world experiment. As
we increase the penalty (𝛾 > 0), the baseline tends towards 0.5 (ran-
dom guessing), and naturally, the performance deteriorates, making
the conditions that ask the individual predicates more suitable.

5 HYBRID CLASSIFICATION

5.1 Problem definition
We extend the crowdsourced classification by allowing to employ a
set𝑀 of machine learning (ML) classifiers. We want to identify the
items in 𝐼 that meet the complex predicate P, but we now can use
ML classifiers alongside crowd workers.

To solve this problem, we now consider training ML classifiers as
we cast votes from the crowd W. The classifiers M can be trained
for P directly, or for (some of) the simpler predicates 𝑝 𝑗 ∈ P.
Therefore, the solution space is naturally impacted by how well the
ML classifiers can learn P or the individual constituents, and thus
help in the crowdsourced classification problem.

5.2 Experiment
The crowdsourcing experiment showed how performance gains
are obtained by querying a complex predicate as multiple (simpler)
questions and then combining back the results. Here we situate the
predicate formulation problem in the context of hybrid classifica-
tion and test our insight from the crowdsourcing experiment. The
literature suggests that hybrid classification offers superior results.
And our intuition is that formulating a complex predicate as multi-
ple questions would allow us to capitalize on the strength of crowd
and ML classifiers and, therefore, obtain superior performance.
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Table 2: The cells correspond to 𝐹1 scores for the best crowd performance (𝑃1-𝑃2 vs. 𝑃1 & 𝑃2), the best ML result on average (among single
and ensemble of classifiers), and the best hybrid performance (Crowd-ML vs. ML-Crowd). The standard deviation for ML is ≤ 0.07.

Classifier Exergame-VR Inequality-OA AMZ-reviews Content-moderation
Distribution 60-40 (80-20) 60-40 (80-20) 60-40 60-40

Crowd 0.656 (0.696) 0.781 (0.606) 0.947 0.825
ML 0.866 (0.821) 0.853 (0.651) 0.753 0.183
Hybrid 0.775 (0.762) 0.800 (0.588) 0.931 0.485

Design. We consider four datasets from the crowdsourcing ex-
periment (excluding Verification), with 118 items in each dataset.
The crowd judgments from the crowdsourcing experiment are ag-
gregated usingmajority voting, andwe combine thesewithmachine
predictions in two (simplistic) ways: Crowd-ML and ML-Crowd,
where Crowd-ML leverages the crowd for the first predicate (𝑝1)
and machine for the second (𝑝2), whileML-Crowd does the opposite
(computing 𝑝1 ∧ 𝑝2 to derive the complex P).

We use classifiers and ensembles of classifiers in this experiment.
The four machine learning classifiers correspond to Logistic Regres-
sion (LR), Support Vector Machine (SVM), BERT [3] and DistilBERT
[44]. The aim of covering different ML techniques is to give our
analysis breadth and not to compare the models, primarily since
we are operating with small datasets. The ensemble methods use
LR, SVM, and Multinomial Naive Bayes (MNB) as base estimators.
We considered voting classifiers (“hard", using majority voting, and
“soft", using the predicted probabilities), a bagging classifier (with
SVM as its base estimator), and a stacking classifier.

The models were trained on the complex P and its constituents.
We used 10-fold stratified cross-validation, repeating the experi-
ment 10 times (with different seeds) and reporting averages. We
fine-tuned the deep learning models for 4 epochs with a learning
rate of 0.001 using the AdamW optimizer [30]. We used an over-
sampling technique [18] to aid the LR, SVM, and MNB classifiers
(alone and within an ensemble) in dealing with imbalanced classes.

5.3 Results
Hybrid classification, Table 2, showed a superior (or comparable)
performance when compared to crowd classification for most of
the datasets we considered (see our supplementary material for a
more in-depth analysis). For the 60-40 case, the hybrid classifier
outperformed the crowd for the Exergame-VR and Inequality-OA
datasets (16% and 2% difference in performance, respectively). For
AMZ-reviews, the performance was comparable (both classifiers
with 𝐹1 > 0.9) while for Content-moderation the crowd showed
superior classification with a score of 𝐹1 = 0.82 in comparison to
only 0.48 for the hybrid approach (this was a difficult dataset in
general for both crowd andML classifiers). The hybrid classification
outperformed in the 80-20 variant of the Exergame-VR dataset
(9% difference in 𝐹1), while the crowd obtained a slightly better
performance for the 80-20 version of Inequality-OA (3% difference).

Hybrid classification outperformed ML for AMZ-reviews (21%
difference) and Content-moderation datasets, although the hybrid
performance was almost random for Content-moderation. In con-
trast, ML performed better for Exergame-VR and Inequality-OA

datasets (11% and 6% difference, respectively), including the imbal-
anced variants, where the difference was at most 10%.

From a task design perspective, these results suggest that framing
a complex predicate as multiple simpler questions translates into
performance gains and plays nicely with recommendations from
hybrid classification research. Querying a complex predicate P
via its constituents allows for a (potentially) better coupling of
crowd and machine classifiers. Our experiment showed that even
this simple Human-AI collaboration approach gives a solid and
consistent performance across different datasets and domains.

6 DISCUSSION & CONCLUSION

Performance gains could be obtained depending on how we for-
mulate a composite question in the context of crowdsourced and
hybrid classification. From a task designer perspective, leveraging
focused more straightforward questions offers more detailed infor-
mation about crowd workers, and can inform the use of different
approaches more adapted to the characteristics (difficulty, selectivity)
of each simpler predicate, instead of committing to a single strategy
(e.g., hiring different workers based on task difficulty [25, 43]).

Querying simpler predicates could enable more effective cou-
pling of ML classifiers and favor long term reusability of already
trained models. We believe that there is potential for training highly-
specialized models that couple effectively with the performance of
workers (instead of learningmodels classify items based on complex
predicates directly). Besides, answering simpler questions outputs
reusable (and detailed) knowledge about the capabilities of crowd
and machine classifiers. For example, if we were to work on an SLR
about exergame usage in older adults, we could rely on the current
knowledge that we have built by querying the simpler predicates
from the Exergame-VR and Inequality-OA datasets. From the per-
spective of crowd workers, this means reapplying learned skills,
and for machines, it involves classifying unseen papers (and filter
out at least articles that are “obviously" not relevant).

We focused on a specific but relevant aspect for task designers:
how to frame a composite question used to classify items. Our
results showed that superior classification performance could be
obtained by querying a complex predicate as multiple (simpler)
questions instead of asking a single coarse predicate. In a scenario
with low accuracy and selectivity, asking the constituents of P (i.e.,
𝑛 questions) may increase the chances of misclassifying items, as
observed in our simulations. In this case, we may rely on framing
the complex P as a single question (limited by the number of
predicates it contains) or framing P as a mix of simpler and coarse
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questions. To some extent, our competing results from either asking
predicates on the same task vs. on separate tasks is related to this
point (i.e., the error rate of a single worker answering𝑛 questions vs.
𝑛workers answering a question each). Both task design choices offer
superior results over the baseline, but there is not enough evidence
to inform decisions based on given problem settings. We find this
an interesting direction of future work, where we design algorithms
that model workers, tasks, and predicates to automatically learn
how to formulate complex predicates to meet quality goals while
operating under a budget.
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